{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"implementationDetail":{"description":{"ru":"Описание","_type":"localeString","en":"Description"},"status":{"ru":"Статус","_type":"localeString","en":"Status"},"show":{"en":"Show more","ru":"Показать ещё","_type":"localeString"},"hide":{"_type":"localeString","en":"Hide","ru":"Скрыть"},"details":{"ru":"Подробности","_type":"localeString","en":"Details"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"additional-info":{"_type":"localeString","en":"Additional information","ru":"Дополнительная информация"},"project-was-put":{"ru":"Проект был сдан в срок","_type":"localeString","en":"The project has been delivered on schedule"},"budget-not-exceeded":{"en":"The budget has not been exceeded","ru":"Бюджет не был превышен","_type":"localeString"},"functionally-task-assignment":{"ru":"Функциональность соответствует задаче","_type":"localeString","en":"Functionality complies with task"},"similar-implementations":{"ru":"Схожие внедрения","_type":"localeString","en":"Similar deployments"},"source":{"ru":"Источник:","_type":"localeString","en":"Source:"},"price":{"ru":"Цена:","_type":"localeString","en":"Price: "},"pluses":{"_type":"localeString","en":"Advantages","ru":"Плюсы"},"raiting":{"en":"Raiting","ru":"Общая оценка","_type":"localeString"},"user":{"en":"User","ru":"Пользователь","_type":"localeString"},"vendor":{"ru":"Производитель","_type":"localeString","en":"Vendor"},"supplier":{"ru":"Поставщик","_type":"localeString","en":"Supplier"},"product":{"_type":"localeString","en":"Product","ru":"Продукт"},"canceled":{"_type":"localeString","en":"Canceled","ru":"Отменено"},"deal-canceled":{"ru":"Сделка отменена","_type":"localeString","en":"Deal canceled"},"deal-closed":{"ru":"Сделка закрыта","_type":"localeString","en":"Deal closed"},"deal-in-progress":{"ru":"Сделка в процессе","_type":"localeString","en":"Deal in progress"},"deal-is-planned":{"_type":"localeString","en":"Deal is planned","ru":"Сделка планируется"},"finished":{"ru":"Завершено","_type":"localeString","en":"Finished"},"in-process":{"_type":"localeString","en":"In Process","ru":"Ведется"},"planned":{"ru":"Планируется","_type":"localeString","en":"Planned"},"proof-of-concept":{"ru":"Пилотный проект","_type":"localeString","en":"Proof of concept"},"stopped":{"ru":"Остановлено","_type":"localeString","en":"Stopped"},"date":{"ru":"Дата внедрения","_type":"localeString","en":"Deployment date"},"roi":{"en":"ROI","ru":"ROI","_type":"localeString"},"not-yet-converted":{"_type":"localeString","en":"Data is moderated and will be published soon. Please, try again later.","ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время."}},"header":{"help":{"_type":"localeString","en":"Help","de":"Hilfe","ru":"Помощь"},"how":{"ru":"Как это работает","_type":"localeString","en":"How does it works","de":"Wie funktioniert es"},"login":{"de":"Einloggen","ru":"Вход","_type":"localeString","en":"Log in"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"_type":"localeString","en":"FAQ","de":"FAQ","ru":"FAQ"},"references":{"en":"Requests","de":"References","ru":"Мои запросы","_type":"localeString"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"autoconfigurator":{"ru":"Калькулятор цены","_type":"localeString","en":" Price calculator"},"comparison-matrix":{"ru":"Матрица сравнения","_type":"localeString","en":"Comparison Matrix"},"roi-calculators":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators"},"b4r":{"ru":"Бонус за референс","_type":"localeString","en":"Bonus for reference"},"business-booster":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"catalogs":{"_type":"localeString","en":"Catalogs","ru":"Каталоги"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"companies":{"en":"Companies","ru":"Компании","_type":"localeString"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"for-suppliers":{"_type":"localeString","en":"For suppliers","ru":"Поставщикам"},"blog":{"en":"Blog","ru":"Блог","_type":"localeString"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"_type":"localeString","en":"My account","ru":"Мой кабинет"},"register":{"ru":"Зарегистрироваться","_type":"localeString","en":"Register"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"_type":"localeString","en":"Are you sure you want to delete","ru":"Подтвердите удаление"},"search-placeholder":{"ru":"Введите поисковый запрос","_type":"localeString","en":"Enter your search term"},"my-profile":{"ru":"Мои данные","_type":"localeString","en":"My profile"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"en":"Make online presentations","_type":"localeString"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"en":"Products","_type":"localeString"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"en":"Find and compare IT products","_type":"localeString"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"_type":"localeString","en":"Find vendor and company-supplier"},"it_categories":{"en":"Explore IT products by category","_type":"localeString"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString","en":"All rights reserved"},"company":{"_type":"localeString","en":"My Company","de":"Über die Firma","ru":"О компании"},"about":{"de":"Über uns","ru":"О нас","_type":"localeString","en":"About us"},"infocenter":{"_type":"localeString","en":"Infocenter","de":"Infocenter","ru":"Инфоцентр"},"tariffs":{"en":"Subscriptions","de":"Tarife","ru":"Тарифы","_type":"localeString"},"contact":{"ru":"Связаться с нами","_type":"localeString","en":"Contact us","de":"Kontaktiere uns"},"marketplace":{"de":"Marketplace","ru":"Marketplace","_type":"localeString","en":"Marketplace"},"products":{"de":"Produkte","ru":"Продукты","_type":"localeString","en":"Products"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс","_type":"localeString"},"salestools":{"_type":"localeString","en":"Salestools","de":"Salestools","ru":"Salestools"},"automatization":{"_type":"localeString","en":"Settlement Automation","de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов"},"roi_calcs":{"_type":"localeString","en":"ROI calculators","de":"ROI-Rechner","ru":"ROI калькуляторы"},"matrix":{"en":"Comparison matrix","de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString"},"b4r":{"en":"Rebate 4 Reference","de":"Rebate 4 Reference","ru":"Rebate 4 Reference","_type":"localeString"},"our_social":{"ru":"Наши социальные сети","_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke"},"subscribe":{"en":"Subscribe to newsletter","de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString"},"subscribe_info":{"en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString"},"policy":{"ru":"Политика конфиденциальности","_type":"localeString","en":"Privacy Policy"},"user_agreement":{"en":"Agreement","ru":"Пользовательское соглашение ","_type":"localeString"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"ru":"Подбор и сравнение ИТ продукта","_type":"localeString","en":"Selection and comparison of IT product"},"quote":{"_type":"localeString","en":"Price calculator","ru":"Калькулятор цены"},"boosting":{"ru":"Развитие бизнеса","_type":"localeString","en":"Business boosting"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"_type":"localeString","en":"blog","ru":"блог"},"pay4content":{"ru":"платим за контент","_type":"localeString","en":"we pay for content"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"en":"Show form","ru":"Показать форму","_type":"localeString"},"subscribe__title":{"ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString","en":"We send a digest of actual news from the IT world once in a month!"},"subscribe__email-label":{"ru":"Email","_type":"localeString","en":"Email"},"subscribe__name-label":{"_type":"localeString","en":"Name","ru":"Имя"},"subscribe__required-message":{"ru":"Это поле обязательное","_type":"localeString","en":"This field is required"},"subscribe__notify-label":{"ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString","en":"Yes, please, notify me about news, events and propositions"},"subscribe__agree-label":{"en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data","ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString"},"subscribe__submit-label":{"en":"Subscribe","ru":"Подписаться","_type":"localeString"},"subscribe__email-message":{"_type":"localeString","en":"Please, enter the valid email","ru":"Пожалуйста, введите корректный адрес электронной почты"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"en":"Last, first name","ru":"Имя Фамилия","_type":"localeString"},"subscribe__success":{"en":"You are successfully subscribed! Check you mailbox.","ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString"},"subscribe__error":{"_type":"localeString","en":"Subscription is unsuccessful. Please, try again later.","ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее."},"roi4presenter":{"en":"Roi4Presenter","de":"roi4presenter","ru":"roi4presenter","_type":"localeString"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"ru":"Главная","_type":"localeString","en":"Home"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"login":{"en":"Login","ru":"Вход","_type":"localeString"},"registration":{"_type":"localeString","en":"Registration","ru":"Регистрация"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"_type":"localeString","en":"First name","ru":"Имя"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"ru":"Должность","_type":"localeString","en":"Position"},"actual-cost":{"ru":"Фактическая стоимость","_type":"localeString","en":"Actual cost"},"received-roi":{"ru":"Полученный ROI","_type":"localeString","en":"Received ROI"},"saving-type":{"_type":"localeString","en":"Saving type","ru":"Тип экономии"},"comment":{"_type":"localeString","en":"Comment","ru":"Комментарий"},"your-rate":{"en":"Your rate","ru":"Ваша оценка","_type":"localeString"},"i-agree":{"_type":"localeString","en":"I agree","ru":"Я согласен"},"terms-of-use":{"en":"With user agreement and privacy policy","ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"ru":"На сайте проводятся технические работы","_type":"localeString","en":"Site under maintenance"},"message":{"_type":"localeString","en":"Thank you for your understanding","ru":"Спасибо за ваше понимание"}},"filters":{"from":{"en":"from","ru":"от","_type":"localeString"},"to":{"_type":"localeString","en":"to","ru":"до"},"filter-price-title":{"ru":"Фильтр по цене","_type":"localeString","en":"Filter by price"},"view-type-label":{"ru":"Вид","_type":"localeString","en":"View"},"sort-type-label":{"ru":"Сортировка","_type":"localeString","en":"Sorting"},"category":{"ru":"Категория","_type":"localeString","en":"Category"},"follow":{"_type":"localeString","en":"Follow","ru":"Следить"},"add-product":{"ru":"Добавить продукт","_type":"localeString","en":"Add Product"},"show-all":{"_type":"localeString","en":"Show all","ru":"Показать все"},"filter-toggle":{"ru":"Фильтр","_type":"localeString","en":"Filter"},"clear-button":{"ru":"Очистить","_type":"localeString","en":"Сlear"},"delivery-type-field":{"ru":"Тип поставки","_type":"localeString","en":"Delivery type"},"product-categories-field":{"ru":"категориz продуктаhjle","_type":"localeString","en":"product categories"},"providers-field":{"ru":"Поставщик, производитель","_type":"localeString","en":"Providers"},"business-tasks-field":{"_type":"localeString","en":"Business tasks","ru":"Бизнес задачи"},"problems-field":{"ru":"Проблемы","_type":"localeString","en":"Problems"},"with-discounts-checkbox":{"en":"With discounts","ru":"Со скидками","_type":"localeString"},"expert-price-checkbox":{"_type":"localeString","en":"Configurator","ru":"Конфигуратор"},"roi-calculator-checkbox":{"_type":"localeString","en":"ROI-calculator","ru":"ROI-калькулятор"},"apply-filter-button":{"ru":"Применить фильтр","_type":"localeString","en":"Apply filter"},"sorting-toggle":{"en":"Sorting","ru":"Сортировка","_type":"localeString"},"show-all-button":{"ru":"Показать все","_type":"localeString","en":"Show all"},"suggest-product-button":{"en":"Suggest product","ru":"Предложить продукт","_type":"localeString"},"with-projects-label":{"en":"With deployments","ru":"С внедрениями","_type":"localeString"},"bonus-4-reference":{"_type":"localeString","en":"Bonus 4 Reference","ru":"Бонус за референс"},"product-categories":{"ru":"Категории продуктов","_type":"localeString","en":"Product Categories"},"countries":{"ru":"Страны","_type":"localeString","en":"Countries"},"seller":{"ru":"Продавец","_type":"localeString","en":"Seller"},"vendors":{"en":"User products vendors","ru":"Производители продуктов пользователя","_type":"localeString"},"suppliers":{"_type":"localeString","en":"User suppliers","ru":"Поставщики пользователя"},"business-process":{"ru":"Проблемы","_type":"localeString","en":"Problems"},"business-objectives":{"ru":"Бизнес задачи","_type":"localeString","en":"Business tasks"},"branch":{"_type":"localeString","en":" Branch","ru":"Отрасль"},"users":{"en":"Users","ru":"Пользователи","_type":"localeString"},"status":{"ru":"Статус","_type":"localeString","en":"Status"},"info-source":{"en":"Info source","ru":"Информационный ресурс","_type":"localeString"},"with-reference-checkbox":{"_type":"localeString","en":"With reference","ru":"С референсами"},"show-deal-checkbox":{"_type":"localeString","en":"Show deal with noname","ru":"Показывать сделки с noname"},"roi-checkbox":{"ru":"ROI","_type":"localeString","en":"ROI"},"problems":{"ru":"Проблемы","_type":"localeString","en":"Problems"},"find":{"ru":"Выполнить поиск","_type":"localeString","en":"Find"},"deal-date":{"ru":"Дата","_type":"localeString","en":"Date"},"try-button":{"en":"Try AI (Beta)","ru":"Попробовать AI (Beta)","_type":"localeString"},"hide":{"_type":"localeString","en":"Hide","ru":"Скрыть"},"company-size":{"ru":"Размер компании","_type":"localeString","en":"Company size"},"add-company":{"ru":"Добавить компанию","_type":"localeString","en":"Add company"},"add-implementation":{"en":"Add deployment","ru":"Добавить внедрение","_type":"localeString"},"sort-title-asc":{"_type":"localeString","en":"From A to Z","ru":"От А до Я"},"sort-title-desc":{"_type":"localeString","en":"From Z to A","ru":"От Я до А"},"sellers-field":{"ru":"Поставщики, Производители","_type":"localeString","en":"Sellers"},"supply-types":{"ru":"Тип поставки","_type":"localeString","en":"Supply type"},"with-comments-checkbox":{"ru":"С комментариями","_type":"localeString","en":"With comments"},"supplier":{"_type":"localeString","en":"Supplier","ru":"Поставщик"},"vendor":{"ru":"Производитель","_type":"localeString","en":"Vendor"},"user":{"_type":"localeString","en":"User","ru":"Пользователь"},"company-type":{"ru":"Тип компании","_type":"localeString","en":"Company type"},"partners-field":{"_type":"localeString","en":"Partners","ru":" Партнеры"},"customers":{"_type":"localeString","en":"Customers","ru":"Покупатели"},"product-supplier":{"ru":"Поставщик продукта","_type":"localeString","en":"Product supplier"},"product-vendor":{"ru":"Производитель продукта","_type":"localeString","en":"Product vendor"},"implementation-date":{"ru":"Дата внедрения","_type":"localeString","en":"Deployment date"},"canceled":{"ru":"Отменено","_type":"localeString","en":"Canceled"},"deal-canceled":{"en":"Deal canceled","ru":"Сделка отменена","_type":"localeString"},"deal-closed":{"ru":"Сделка закрыта","_type":"localeString","en":"Deal closed"},"deal-in-progress":{"en":"Deal in progress","ru":"Сделка в процессе","_type":"localeString"},"deal-is-planned":{"ru":"Сделка планируется","_type":"localeString","en":"Deal is planned"},"finished":{"ru":"Завершено","_type":"localeString","en":"Finished"},"in-process":{"en":"In Process","ru":"Ведется","_type":"localeString"},"planned":{"_type":"localeString","en":"Planned","ru":"Планируется"},"proof-of-concept":{"ru":"Пилотный проект","_type":"localeString","en":"Proof of concept"},"stopped":{"ru":"Остановлено","_type":"localeString","en":"Stopped"},"competencies":{"_type":"localeString","en":"Competencies","ru":"Компетенции"}}},"translationsStatus":{"implementationDetail":"success","filters":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"implementationDetail":{}},"pageMetaDataStatus":{"implementationDetail":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{"modernization-of-the-agro-industrial-complex-for-a-supermarket-based-on-hitachi-unified-storage-vm-and-power-730-express-8231-e2d":{"id":38,"title":"Modernization of the agro-industrial complex for a supermarket based on Hitachi Unified Storage VM and Power 730 Express (8231-E2D)","description":"Description is not ready yet","alias":"modernization-of-the-agro-industrial-complex-for-a-supermarket-based-on-hitachi-unified-storage-vm-and-power-730-express-8231-e2d","roi":0,"seo":{"title":"Modernization of the agro-industrial complex for a supermarket based on Hitachi Unified Storage VM and Power 730 Express (8231-E2D)","keywords":"","description":"Description is not ready yet","og:title":"Modernization of the agro-industrial complex for a supermarket based on Hitachi Unified Storage VM and Power 730 Express (8231-E2D)","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":462,"title":"Kviza-Trade","logoURL":"https://old.roi4cio.com/uploads/roi/company/Kviza-Trade_Logo.jpg","alias":"kviza-treid","address":"Железнодорожное шоссе, 57, г. Киев, 01103","roles":[],"description":" Quiza-Trade (“Velyka Kyshenya”) is one of the largest retail chains in Ukraine with a fourteen-year history of successful work.\r\nToday 51 stores of the chain are opened in 16 cities of Ukraine - 40 supermarkets “Velika Kyshenya”, 1 premium format store “VK SELECT” and 9 “convenience stores” “VK Express”.\r\nFor six consecutive years, Velyka Kyshenya has become the best retail chain based on the results of the Choice of the Year festival. The trust of customers choosing “Great Kishenya” is the biggest reward for us and a huge incentive to develop further.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":3,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://kishenya.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Kviza-Trade","keywords":"Кишеня, Велика, Квиза-Трейд, магазин, Украины, торговли, розничной, результатам","description":" Quiza-Trade (“Velyka Kyshenya”) is one of the largest retail chains in Ukraine with a fourteen-year history of successful work.\r\nToday 51 stores of the chain are opened in 16 cities of Ukraine - 40 supermarkets “Velika Kyshenya”, 1 premium format store “VK SE","og:title":"Kviza-Trade","og:description":" Quiza-Trade (“Velyka Kyshenya”) is one of the largest retail chains in Ukraine with a fourteen-year history of successful work.\r\nToday 51 stores of the chain are opened in 16 cities of Ukraine - 40 supermarkets “Velika Kyshenya”, 1 premium format store “VK SE","og:image":"https://old.roi4cio.com/uploads/roi/company/Kviza-Trade_Logo.jpg"},"eventUrl":""},"supplier":{"id":246,"title":"SI BIS","logoURL":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png","alias":"si-bis","address":"г. Киев, 04073, ул. Рылеева, 10-А +38 (044) 499-12-12","roles":[],"description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT partner for more than 400 Ukrainian companies.\r\n\r\nSI BIS has a high competence in the promotion of integrated IBM solutions, Cisco and the Microsoft, is a recognized leader in the provision of services and technical support, implementing complex consulting projects and provides a wide range of services to optimize the information and business processes for organizations.\r\n\r\nUsing industry experience and global best practices, deep technological expertise, a balanced portfolio of solutions and predictive model of service and technical support, the company SI BIS helps customers to simplify and rationalize the management of their business.","companyTypes":[],"products":{},"vendoredProductsCount":6,"suppliedProductsCount":203,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":42,"vendorImplementationsCount":16,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sibis.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SI BIS","keywords":"solutions, business, technical, services, support, than, more, company","description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:title":"SI BIS","og:description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:image":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png"},"eventUrl":""},"vendors":[{"id":246,"title":"SI BIS","logoURL":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png","alias":"si-bis","address":"г. Киев, 04073, ул. Рылеева, 10-А +38 (044) 499-12-12","roles":[],"description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT partner for more than 400 Ukrainian companies.\r\n\r\nSI BIS has a high competence in the promotion of integrated IBM solutions, Cisco and the Microsoft, is a recognized leader in the provision of services and technical support, implementing complex consulting projects and provides a wide range of services to optimize the information and business processes for organizations.\r\n\r\nUsing industry experience and global best practices, deep technological expertise, a balanced portfolio of solutions and predictive model of service and technical support, the company SI BIS helps customers to simplify and rationalize the management of their business.","companyTypes":[],"products":{},"vendoredProductsCount":6,"suppliedProductsCount":203,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":42,"vendorImplementationsCount":16,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sibis.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SI BIS","keywords":"solutions, business, technical, services, support, than, more, company","description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:title":"SI BIS","og:description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:image":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png"},"eventUrl":""}],"products":[{"id":1522,"logo":false,"scheme":false,"title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","vendorVerified":0,"rating":"1.40","implementationsCount":1,"suppliersCount":0,"alias":"hitachi-unified-storage-vm-and-power-730-express-8231-e2d-by-si-bis","companyTypes":[],"description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более производительной системой Power 730 Express (8231-E2D), созданной на основе новейшей процессорной технологии Power7 - приспособленной для больших объемов информации.\r\n\r\n","shortDescription":"Комплексная модернизация АПК на базе Hitachi Unified Storage VM и расширения серверного оборудования IBM более производительной системой Power 730 Express (8231-E2D)","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","keywords":"Hitachi, Unified, 8231-E2D, Express, Storage, Power, технологии, более","description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более пр","og:title":"Hitachi Unified Storage VM and Power 730 Express (8231-E2D) by SI BIS","og:description":"Модернизация инфраструктуры СХД посредством установки высокопроизводительной платформы на базе Hitachi Unified Storage VM (виртуализация существующей СХД с миграцией данных на HUS VM) - для бесперебойной работы;\r\nрасширение серверного оборудования IBM более пр"},"eventUrl":"","translationId":7118,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":5,"title":"Enhance Staff Productivity"},{"id":4,"title":"Reduce Costs"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":176,"title":"No unified address book"},{"id":174,"title":"No unified email system"},{"id":177,"title":"Decentralized IT systems"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"http://www.sibis.com.ua/clientproj/torgovlya-i-uslugi/fudmerezha/modernizatsiya-apparatno-programmnogo-kompleksa-kompanii-fudmerezha/","title":"Supplier's web site"}},"comments":[],"references":[],"referencesCount":0,"similarImplementations":[{"id":734,"title":"Ampex TuffServ for Aerospace","description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data loaders for use in Collins Aerospace’s MS-110 airborne reconnaissance systems.<br /><br />The TuffServ SSRs will leverage use of the Ampex Common Compute Environment (ACCE), which includes network attached storage (NAS) software and graphical user interfaces (GUIs) common to all TuffServ airborne NAS products. Ampex will provide support from its headquarters in Hayward, CA.<br /><br />The TuffServ series is designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. Additionally, the TuffServ series supports the full spectrum of commercial and military operations to include Intelligence, Surveillance, and Reconnaissance (ISR) and Flight Test, provides removable storage capacities up to 100TB, and a range of interfaces and software capabilities.\r\n<blockquote><br />This agreement is a fundamental, ongoing part of Ampex’s strategic approach to working with leading edge mission system providers in the high data rate market. We are exceptionally proud to have been selected by Collins Aerospace and look forward to continued success in supporting this multi-year effort.</blockquote>\r\n\r\n<span style=\"font-style: italic;\">Jim Orahood, Vice President and General Manager of Ampex Data Systems.</span>","alias":"ampex-tuffserv-for-aerospace","roi":0,"seo":{"title":"Ampex TuffServ for Aerospace","keywords":"","description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data ","og:title":"Ampex TuffServ for Aerospace","og:description":"December 2018 – Ampex Data Systems (Ampex), a Delta Information Systems Company, is proud to announce the signing of a long term agreement (LTA) with Collins Aerospace to deliver TuffServ© solid state recorders (SSRs), memory storage systems, and mission data "},"deal_info":"","user":{"id":5127,"title":"Collins Aerospace","logoURL":"https://old.roi4cio.com/uploads/roi/company/Collins_Aerospace.png","alias":"collins-aerospace","address":"","roles":[],"description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins Aerospace has the capabilities, comprehensive portfolio and expertise to solve customers' toughest challenges and to meet the demands of a rapidly evolving global market.\r\nBoth Rockwell Collins and UTC Aerospace Systems also contributed to remarkable moments in space exploration. UTC Aerospace Systems designed the space suits worn by America’s first astronauts during the Mercury program, and Rockwell Collins provided the communications equipment used by every American astronaut traveling through space (including the footage of the first step on the moon). \r\nAs Collins Aerospace, the combined talents of both organizations are committed to honoring their strong legacy while creating comprehensive strategies to propel its customers and the industry toward the future, every day.\r\n\r\n","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.collinsaerospace.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Collins Aerospace","keywords":"","description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins A","og:title":"Collins Aerospace","og:description":" Collins Aerospace, a unit of United Technologies Corp., is a leader in technologically advanced and intelligent solutions for the global aerospace and defense industry. Created in 2018 by bringing together UTC Aerospace Systems and Rockwell Collins, Collins A","og:image":"https://old.roi4cio.com/uploads/roi/company/Collins_Aerospace.png"},"eventUrl":""},"supplier":{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.ampex.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":""},"vendors":[{"id":5126,"title":"Ampex","logoURL":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png","alias":"ampex","address":"Hayward, California , United States","roles":[],"description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation, a world leader in design, development and manufacture of airborne recording and avionics systems for rugged applications, is a privately owned company head-quartered in Hayward, California. Ampex offers high-capacity, high performance digital storage systems capable of functioning in demanding environments on land, at sea or in the air. Ampex products are principally used in defence and acceptance or flight test applications to gather digital images and other data from aircraft, satellites and submarines. These products are also used in flight and sensor test applications. ","companyTypes":[],"products":{},"vendoredProductsCount":1,"suppliedProductsCount":1,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":1,"vendorImplementationsCount":1,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.ampex.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ampex","keywords":"","description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:title":"Ampex","og:description":" Ampex is an American electronics company founded in 1944 by Alexander M. Poniatoff as a spin-off of Dalmo-Victor.The name AMPEX is a portmanteau, created by its founder, which stands for Alexander M. Poniatoff Excellence. \r\nAmpex Data Systems Corporation","og:image":"https://old.roi4cio.com/uploads/roi/company/AMPEX.png"},"eventUrl":""}],"products":[{"id":3253,"logo":false,"scheme":false,"title":"Ampex TuffServ","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"alias":"ampex-tuffserv","companyTypes":[],"description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performance needs of the marketplace, Ampex provides its customers with product solutions for their most demanding applications across the entire pricing spectrum - TuffServ 282, TuffServ 480GE, TuffServ 480v2, TuffServ 540, TuffServ 640, TuffServ 641, TuffServ® 481, TuffServ® TS 485. \r\nTuffServ®Series.\r\nEmploying a common architecture found throughout the TuffServ offerings all products advance performance and scalability to an entirely new level. With blazing read/write speeds of up 1GB/sec, 12.8TB of removable solid-statememory, and dual 10Gbit optical Ethernet ports, TuffServ offers unparalleled performance for a wide variety of airborne and mobile applications.\r\nThey addresses key issues encountered when attempting to take products designed for data center use into aerospace environments: cooling, removable storage and the management of internal cables in high-vibration environments.7","shortDescription":"The TuffServ is series of servers designed to perform in extreme airborne, ground, and space environments and offers the fastest ruggedized Network File Servers on the market. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Ampex TuffServ","keywords":"","description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc","og:title":"Ampex TuffServ","og:description":"Ampex Data Systems is a legendary supplier of ruggedized airborne recording and network data acquisition systems used in flight test, ISR, and tactical mission applications. By using innovative hardware and software designed specifically to meet the performanc"},"eventUrl":"","translationId":3253,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":307,"title":"Enhance Competitive Ability"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":354,"title":"Low bandwidth data channels"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://www.ampex.com/ampex-data-systems-announces-a-long-term-agreement-with-collins-aerospace/","title":"Web-site of vendor"}},"comments":[],"referencesCount":0},{"id":903,"title":"Dell EMC VMAX 100K for FUIB bank","description":"Description is not ready yet","alias":"dell-emc-vmax-100k-for-fuib-bank","roi":0,"seo":{"title":"Dell EMC VMAX 100K for FUIB bank","keywords":"","description":"Description is not ready yet","og:title":"Dell EMC VMAX 100K for FUIB bank","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":530,"title":"First Ukrainian International Bank (FUIB)","logoURL":"https://old.roi4cio.com/uploads/roi/company/Pervyi_Ukrainskii_Mezhdunarodnyi_Bank__PUMB_.png","alias":"pervyi-ukrainskii-mezhdunarodnyi-bank-pumb","address":"","roles":[],"description":"First Ukrainian International Bank (FUIB) is a large, sustainable, privately owned bank with two-decades of operations in Ukraine’s financial market, delivering high quality banking services, consistently enhancing customer service, and attentive to customer needs. FUIB is among Ukraine’s TOP 10 banks by financials.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":5,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://pumb.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"First Ukrainian International Bank (FUIB)","keywords":"Ukraine’s, financial, operations, market, delivering, services, consiste, banking","description":"First Ukrainian International Bank (FUIB) is a large, sustainable, privately owned bank with two-decades of operations in Ukraine’s financial market, delivering high quality banking services, consistently enhancing customer service, and attentive to customer n","og:title":"First Ukrainian International Bank (FUIB)","og:description":"First Ukrainian International Bank (FUIB) is a large, sustainable, privately owned bank with two-decades of operations in Ukraine’s financial market, delivering high quality banking services, consistently enhancing customer service, and attentive to customer n","og:image":"https://old.roi4cio.com/uploads/roi/company/Pervyi_Ukrainskii_Mezhdunarodnyi_Bank__PUMB_.png"},"eventUrl":""},"supplier":{"id":246,"title":"SI BIS","logoURL":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png","alias":"si-bis","address":"г. Киев, 04073, ул. Рылеева, 10-А +38 (044) 499-12-12","roles":[],"description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT partner for more than 400 Ukrainian companies.\r\n\r\nSI BIS has a high competence in the promotion of integrated IBM solutions, Cisco and the Microsoft, is a recognized leader in the provision of services and technical support, implementing complex consulting projects and provides a wide range of services to optimize the information and business processes for organizations.\r\n\r\nUsing industry experience and global best practices, deep technological expertise, a balanced portfolio of solutions and predictive model of service and technical support, the company SI BIS helps customers to simplify and rationalize the management of their business.","companyTypes":[],"products":{},"vendoredProductsCount":6,"suppliedProductsCount":203,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":42,"vendorImplementationsCount":16,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sibis.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SI BIS","keywords":"solutions, business, technical, services, support, than, more, company","description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:title":"SI BIS","og:description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:image":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png"},"eventUrl":""},"vendors":[{"id":955,"title":"Dell EMC","logoURL":"https://old.roi4cio.com/uploads/roi/company/dell_emc_product.jpg","alias":"dell-emc","address":"","roles":[],"description":"Dell EMC (EMC Corporation until 2016) is an American multinational corporation headquartered in Hopkinton, Massachusetts, United States. Dell EMC sells data storage, information security, virtualization, analytics, cloud computing and other products and services that enable organizations to store, manage, protect, and analyze data. Dell EMC's target markets include large companies and small- and medium-sized businesses across various vertical markets. The company's stock (as EMC Corporation) was added to the New York Stock Exchange on April 6, 1986, and was also listed on the S&P 500 index.\r\n\r\nSource: https://en.wikipedia.org/wiki/Dell_EMC","companyTypes":[],"products":{},"vendoredProductsCount":17,"suppliedProductsCount":17,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":6,"vendorPartnersCount":0,"supplierPartnersCount":59,"b4r":0,"categories":{},"companyUrl":"https://www.dellemc.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Dell EMC","keywords":"Dell, markets, data, Corporation, until, added, York, Exchange","description":"Dell EMC (EMC Corporation until 2016) is an American multinational corporation headquartered in Hopkinton, Massachusetts, United States. Dell EMC sells data storage, information security, virtualization, analytics, cloud computing and other products and servic","og:title":"Dell EMC","og:description":"Dell EMC (EMC Corporation until 2016) is an American multinational corporation headquartered in Hopkinton, Massachusetts, United States. Dell EMC sells data storage, information security, virtualization, analytics, cloud computing and other products and servic","og:image":"https://old.roi4cio.com/uploads/roi/company/dell_emc_product.jpg"},"eventUrl":""}],"products":[{"id":4782,"logo":false,"scheme":false,"title":"Dell EMC VMAX 100K","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"alias":"dell-emc-vmax-100k","companyTypes":[],"description":"The VMAX 100K is the entry model in our line of VMAX3 systems. VMAX3 isn’t just bigger and faster enterprise data storage. It’s also a data services platform designed to enable file, backup, mainframe and other rich services.<br /><br />EMC VMAX3 storage arrays ship with virtual provisioning turned on, ready to provision your service level objective with 1 click. Set SLOs for resources within VMAX 100K or with FAST.X for external EMC storage such as XtremIO or third party storage.<br /><br />With attractive pricing, simple management, and embedded file services, VMAX 100K helps you converge mission-critical block, file, and mainframe storage to lower your total cost of ownership. Configure your EMC VMAX 100K as a hybrid storage array with the right amount of flash SSD configured for higher IOPS. You'll get the best response time in the smallest footprint and at the lowest cost.<br /><br /><span style=\"font-weight: bold;\">Key features:</span>\r\n\r\n<ul><li>Extend performance and reliability beyond Tier 1 workloads to enterprise data services</li></ul>\r\n<ul><li>Scale up to 2 VMAX3 engines, up to 48 CPU cores per array</li></ul>\r\n<ul><li>Grow with up to 64 front-end ports and 500 TB usable capacity</li></ul>\r\n<ul><li>Deliver high performance with Dynamic Virtual Matrix for database, OLTP, and file workloads</li></ul>\r\n<ul><li>Shrink data center footprint: VMAX3 engine plus up to 720 drives in a single rack</li></ul>\r\n<ul><li>Use FAST.X to take advantage of VMAX3 data services on externally tiered workloads such as EMC XtremIO all-flash array or non-EMC storage</li></ul>\r\n<ul><li>Ensure 99.9999% uptime with always-on availability, secure data with optional data at rest encryption</li></ul>","shortDescription":"Automate, modernize, and converge your data center infrastructure with an EMC VMAX 100K storage array.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Dell EMC VMAX 100K","keywords":"","description":"The VMAX 100K is the entry model in our line of VMAX3 systems. VMAX3 isn’t just bigger and faster enterprise data storage. It’s also a data services platform designed to enable file, backup, mainframe and other rich services.<br /><br />EMC VMAX3 storage array","og:title":"Dell EMC VMAX 100K","og:description":"The VMAX 100K is the entry model in our line of VMAX3 systems. VMAX3 isn’t just bigger and faster enterprise data storage. It’s also a data services platform designed to enable file, backup, mainframe and other rich services.<br /><br />EMC VMAX3 storage array"},"eventUrl":"","translationId":4783,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":10,"title":"Ensure Compliance"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":334,"title":"Poor timing of management decision making"},{"id":366,"title":"IT infrastructure consumes a lot of power"},{"id":370,"title":"No automated business processes"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":374,"title":"IT infrastructure downtimes"},{"id":377,"title":"Separate communications channels"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://www.sibis.com.ua/project/snizhenie-stoimosti-i-uvelichenie-proizvoditelnosti-sistem-hraneniya-dannyh/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":258,"title":"Hitachi Content Platform Anywhere to Modernize Bank IT Management","description":"Description is not ready yet","alias":"hitachi-content-platform-anywhere-to-modernize-bank-it-management","roi":0,"seo":{"title":"Hitachi Content Platform Anywhere to Modernize Bank IT Management","keywords":"","description":"Description is not ready yet","og:title":"Hitachi Content Platform Anywhere to Modernize Bank IT Management","og:description":"Description is not ready yet"},"deal_info":"","user":{},"supplier":{},"vendors":[{"id":313,"title":"Hitachi Data Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/hitachi.png","alias":"hitachi-data-systems","address":"","roles":[],"description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Division.\r\n\r\nIn 2010 Hitachi Data Systems sold through direct and indirect channels in more than 170 countries and regions. Its customers included over half of the Fortune 100 companies at the time.","companyTypes":[],"products":{},"vendoredProductsCount":5,"suppliedProductsCount":5,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":6,"vendorPartnersCount":0,"supplierPartnersCount":4,"b4r":0,"categories":{},"companyUrl":"www.hds.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hitachi Data Systems","keywords":"Hitachi, Systems, Data, than, channels, more, direct, sold","description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:title":"Hitachi Data Systems","og:description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:image":"https://old.roi4cio.com/uploads/roi/company/hitachi.png"},"eventUrl":""}],"products":[{"id":808,"logo":false,"scheme":false,"title":"Hitachi Content Platform Anywhere","vendorVerified":0,"rating":"2.40","implementationsCount":1,"suppliersCount":0,"alias":"hitachi-content-platform-anywhere","companyTypes":[],"description":"Mobilize Your Workforce, Minimize Your Risks\r\nMOBILIZE YOUR ENTERPRISE DATA\r\nTransform to a digital workplace for greater efficiency and workforce engagement\r\nEnsure that data is properly protected, and meet regulatory requirements for access, preservation, security and auditing\r\nIncrease worker productivity through collaboration tools and anytime, anywhere, any device access to data\r\nEmpower Your IT to Deliver Its Own Mobility Solution\r\nSECURE, INTEGRATED MOBILITY SOLUTION\r\nMobilize data in existing NAS and content management systems, and transform from traditional to cloud-based home directories\r\nProtect end-user data and easily recover from device failures, user error and threats such as ransomware\r\nCreate a digital workplace with cloud home directories, collaboration tools and rich APIs to satisfy diverse needs and avoid the risks of shadow IT\r\n\r\nAdvantages\r\n\r\nSECURE\r\nMobilize Data Without Compromising Security and Visibility\r\nRetain Visibility and Control of Your Data\r\nAdhere to compliance and governance policies, all while securing access from anywhere.\r\nDiminish Shadow IT and Unsanctioned Application Use\r\nDeliver the public cloud services users need and the collaborative tools they want from your own cloud environment.\r\nSafeguard End-User Data\r\nProtect, secure and easily recover data on end-user devices.\r\n\r\nSIMPLE\r\nEmpower Your Workforce With Intuitive Collaboration Tools\r\nAnytime, Anywhere, Any Device Access to Data\r\nSync and share across PC, Mac, iOS, Android, Windows Phone® or any web-enabled device through the HCP Anywhere user portal.\r\nAvoid Mailbox Quota and File-Size Limitations\r\nPlug-in for Microsoft® Outlook® converts attachments into shared links, reducing mailbox size and enabling collaboration on files as large as 2TB.\r\nStreamline Deployment for Enterprise Environments\r\nEasily deploy software within existing IT environments while supporting antivirus, device management and user authentication services, automatic client updates and user self-service.\r\n\r\nSMART\r\nOptimize Savings for the Long Term\r\nProvide Mobile Access to Corporate File Shares\r\nExtend mobile access to data in existing NAS devices, including Hitachi Data Ingestor, Hitachi NAS Platform, EMC, NetApp and Microsoft® Windows® servers.\r\nReduce Your Help Desk Burden\r\nSelf-service features let users manage devices, file sharing and data recovery themselves while the service automatically stores and protects end-user data.\r\nStore Data Efficiently\r\nShare links to files instead of attachments to reduce network load; deduplicate and compress data to reduce storage needs.\r\nFLEXIBLE\r\nTurnkey Mobility Platform Designed for Your Business\r\nDeliver Private, Hybrid or Public Cloud Storage Services\r\nOffer a range of file services from a single solution extending from your data center to remote offices and end users.\r\nCustomize for Your Business Needs\r\nTailor the solution based on your unique sharing policies, quotas, and governance rules and apply your own logos and branding.\r\nTransform to a Digital Workplace\r\nSoftware development kits and rich APIs let you build your own apps and workflows with built-in collaboration, data protection and compliance tools.\r\n","shortDescription":"Hitachi Content Platform Anywhere\r\nSECURE, SIMPLE, SMART ENTERPRISE MOBILITY\r\nMobilize, protect, sync and share user data to improve productivity","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":14,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Content Platform Anywhere","keywords":"data, Your, from, Data, your, collaboration, user, tools","description":"Mobilize Your Workforce, Minimize Your Risks\r\nMOBILIZE YOUR ENTERPRISE DATA\r\nTransform to a digital workplace for greater efficiency and workforce engagement\r\nEnsure that data is properly protected, and meet regulatory requirements for access, preservation, se","og:title":"Hitachi Content Platform Anywhere","og:description":"Mobilize Your Workforce, Minimize Your Risks\r\nMOBILIZE YOUR ENTERPRISE DATA\r\nTransform to a digital workplace for greater efficiency and workforce engagement\r\nEnsure that data is properly protected, and meet regulatory requirements for access, preservation, se"},"eventUrl":"","translationId":809,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":180,"title":"Russia","name":"RUS"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":5,"title":"Enhance Staff Productivity"},{"id":7,"title":"Improve Customer Service"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"http://www.cnews.ru/news/line/2017-05-24_ibs_platformix_uprostil_upravlenie_itinfrastrukturoj","title":"Media"}},"comments":[],"referencesCount":0},{"id":927,"title":"Hitachi TagmaStore Adaptable Modular Storage AMS 500 for Raiffeisen Bank Aval","description":"Description is not ready yet","alias":"hitachi-tagmastore-adaptable-modular-storage-ams-500-for-raiffeisen-bank-aval","roi":0,"seo":{"title":"Hitachi TagmaStore Adaptable Modular Storage AMS 500 for Raiffeisen Bank Aval","keywords":"","description":"Description is not ready yet","og:title":"Hitachi TagmaStore Adaptable Modular Storage AMS 500 for Raiffeisen Bank Aval","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":544,"title":"Raiffeisen Bank Aval","logoURL":"https://old.roi4cio.com/uploads/roi/company/Aval.jpg","alias":"raiffaizen-bank-aval","address":"","roles":[],"description":"Raiffeisen Bank Aval Public Joint Stock Company was registered on March 27, 1992 (operated under the brand name of Joint Stock Postal Pension Bank Aval until September 25, 2006). Since October 2005, the Bank has been part of the Raiffeisen International Bank Holding AG Group, Austria (since October 2010 — Raiffeisen Bank International AG, as of September 30, 2015 the Group held 96.46% of shares in the Bank).\r\nThe Bank provides a broad range of standard and innovative banking services through its nationwide network which comprised, as of September 30, 2015, 617 outlets located in big cities, provincial and community centers throughout Ukraine.\r\nThe Bank has an effective management structure, based on a clear division into business lines and supporting verticals (information technologies, operation support, controlling, security and other) both in the Bank’s Head-office and regional directorates. As a truly international bank, Raiffeisen Bank Aval clearly separates front-office functions from back-office ones to achieve higher quality of client service and enhance risk mitigation.\r\nTraditionally, Raiffeisen Bank Aval is ranked among top Ukrainian banks by trust and recognition of clients, partners and experts, both Ukrainian and international.\r\nThe Bank strives to improve its customer service quality through using its own long-term experience, the valuable expertise of Raiffeisen Bank International network banks and the newest technologies.\r\nSource: https://www.linkedin.com/company/raiffeisen-bank-aval/about/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":6,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.aval.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Raiffeisen Bank Aval","keywords":"Aval, Bank, Raiffeisen, Joint, Stock, name, brand, Postal","description":"Raiffeisen Bank Aval Public Joint Stock Company was registered on March 27, 1992 (operated under the brand name of Joint Stock Postal Pension Bank Aval until September 25, 2006). Since October 2005, the Bank has been part of the Raiffeisen International Bank H","og:title":"Raiffeisen Bank Aval","og:description":"Raiffeisen Bank Aval Public Joint Stock Company was registered on March 27, 1992 (operated under the brand name of Joint Stock Postal Pension Bank Aval until September 25, 2006). Since October 2005, the Bank has been part of the Raiffeisen International Bank H","og:image":"https://old.roi4cio.com/uploads/roi/company/Aval.jpg"},"eventUrl":""},"supplier":{"id":246,"title":"SI BIS","logoURL":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png","alias":"si-bis","address":"г. Киев, 04073, ул. Рылеева, 10-А +38 (044) 499-12-12","roles":[],"description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT partner for more than 400 Ukrainian companies.\r\n\r\nSI BIS has a high competence in the promotion of integrated IBM solutions, Cisco and the Microsoft, is a recognized leader in the provision of services and technical support, implementing complex consulting projects and provides a wide range of services to optimize the information and business processes for organizations.\r\n\r\nUsing industry experience and global best practices, deep technological expertise, a balanced portfolio of solutions and predictive model of service and technical support, the company SI BIS helps customers to simplify and rationalize the management of their business.","companyTypes":[],"products":{},"vendoredProductsCount":6,"suppliedProductsCount":203,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":42,"vendorImplementationsCount":16,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sibis.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SI BIS","keywords":"solutions, business, technical, services, support, than, more, company","description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:title":"SI BIS","og:description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:image":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png"},"eventUrl":""},"vendors":[{"id":313,"title":"Hitachi Data Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/hitachi.png","alias":"hitachi-data-systems","address":"","roles":[],"description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Division.\r\n\r\nIn 2010 Hitachi Data Systems sold through direct and indirect channels in more than 170 countries and regions. Its customers included over half of the Fortune 100 companies at the time.","companyTypes":[],"products":{},"vendoredProductsCount":5,"suppliedProductsCount":5,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":6,"vendorPartnersCount":0,"supplierPartnersCount":4,"b4r":0,"categories":{},"companyUrl":"www.hds.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hitachi Data Systems","keywords":"Hitachi, Systems, Data, than, channels, more, direct, sold","description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:title":"Hitachi Data Systems","og:description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:image":"https://old.roi4cio.com/uploads/roi/company/hitachi.png"},"eventUrl":""}],"products":[{"id":4800,"logo":false,"scheme":false,"title":"Hitachi TagmaStore™ Adaptable Modular Storage Model AMS500","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"alias":"hitachi-tagmastoretm-adaptable-modular-storage-model-ams500","companyTypes":[],"description":"<span style=\"font-weight: bold;\">Enterprise-class Solutions for SMB Customers</span>\r\nSmall-to-midsized businesses (SMBs) are facing big-company challenges of escalating data growth, availability, and protection as well as regulatory compliance and complex storage infrastructures. With many years of experience serving FORTUNE 500 companies, Hitachi Data Systems understands these challenges and has developed Application Optimized Storage™ solutions to match application requirements to storage attributes. Now Hitachi Data Systems brings SMB customers these proven solutions in modular, cost-effective packaging—including the Hitachi TagmaStore™ Adaptable Modular Storage model AMS500.<br />\r\n<span style=\"font-weight: bold;\">Business Benefits</span><br />\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Gain high-end performance and capacity, priced for the midrange</span></span>\r\n<ul><li>Move from server-internal storage to scalable external storage, consolidate multiple storage systems into one, or build a first storage area network (SAN); either iSCSI or Fibre Channel connectivity supported.</li></ul>\r\n<ul><li>Use NAS connectivity options for collaborative file-sharing applications.</li></ul>\r\n<ul><li>Deliver application-specific performance, availability, and protection across systems—from a few terabytes to more than 86TB (SATA intermix drives) or 64TB (Fibre Channel drives).</li></ul>\r\n<ul><li>Use advanced features—Cache Partition Manager and RAID-6—to help improve performance, reliability, and usability.</li></ul>\r\n<ul><li>Partition and dedicate cache to maximize performance of high-I/O applications.</li></ul>\r\n<ul><li>Support outstanding performance for virtually any workload, with 2,048 logical units (LUNs).</li></ul>\r\n<ul><li>Choose between SATA intermix and Fibre Channel to host any workload on the most economical storage system.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Consolidate storage, anticipate growth</span></span>\r\n<ul><li>Consolidate and centralize management to reduce costs.</li></ul>\r\n<ul><li>Scale to 86.9TB of SATA and Fibre Channel intermix or to 64.7TB of Fibre Channel storage capacity.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Meet compliance requirements, protect data, and reduce recovery times</span></span>\r\n<ul><li>Enhanced SATA data protection provides unmatched data availability and resiliency.</li></ul>\r\n<ul><li>RAID-6 ensures high availability and flexibility in RAID group rebuild.</li></ul>\r\n<ul><li>Hi-Track® “call-home” service/remote maintenance tool for 24/7 diagnostics keeps potential issues from becoming problems.</li></ul>\r\n<ul><li>Fully redundant and hot-swappable components keep your applications online.</li></ul>\r\n<ul><li>Within-system volume replication or incremental copies provide frequent and nondisruptive backups.</li></ul>\r\n<ul><li>Remote replication is enabled by Hitachi TrueCopy™ Remote Replication software.</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Build a first storage network or extend an existing one</span></span>\r\n<ul><li>Plug-and-play SAN Kits for Microsoft Simple SAN and SAN Starter solutions for easy deployment</li></ul>\r\n<ul><li>Diskless boot for SAN-attached servers</li></ul>\r\n<ul><li>High-capacity storage for network attached storage (NAS) applications</li></ul>\r\n<ul><li>Systems management and configuration using Storage Management and Hitachi HiCommand® Suite software</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Leverage for SMB applications or enterprise tiered storage deployments</span></span>\r\n<ul><li>Microsoft Exchange Server, ERP, CRM, database, NAS filer, backup applications, or tape replacement</li></ul>\r\n<ul><li>Archival and long-term tamperproof data retention to meet regulatory requirements</li></ul>\r\n<ul><li>Complete data lifecycle management solutions within a tiered storage environment when combined with Hitachi enterprise-class storage</li></ul>","shortDescription":"Hitachi TagmaStore® Adaptable Modular Storage models AMS500 deliver the best price/performance, availability and best-in-class scalability in the modular storage market space","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi TagmaStore™ Adaptable Modular Storage Model AMS500","keywords":"","description":"<span style=\"font-weight: bold;\">Enterprise-class Solutions for SMB Customers</span>\r\nSmall-to-midsized businesses (SMBs) are facing big-company challenges of escalating data growth, availability, and protection as well as regulatory compliance and complex sto","og:title":"Hitachi TagmaStore™ Adaptable Modular Storage Model AMS500","og:description":"<span style=\"font-weight: bold;\">Enterprise-class Solutions for SMB Customers</span>\r\nSmall-to-midsized businesses (SMBs) are facing big-company challenges of escalating data growth, availability, and protection as well as regulatory compliance and complex sto"},"eventUrl":"","translationId":4801,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":180,"title":"Inability to forecast execution timelines"},{"id":340,"title":"Low quality of customer service"},{"id":346,"title":"Shortage of inhouse IT resources"},{"id":370,"title":"No automated business processes"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":386,"title":"Risk of lost access to data and IT systems"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://www.sibis.com.ua/project/modernizatsiya-shd-na-baze-oborudovaniya-hitachi/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":39,"title":"Hitachi Universal Storage Platform V (USP V) for bank","description":"Description is not ready yet","alias":"hitachi-universal-storage-platform-v-usp-v-for-bank","roi":0,"seo":{"title":"Hitachi Universal Storage Platform V (USP V) for bank","keywords":"","description":"Description is not ready yet","og:title":"Hitachi Universal Storage Platform V (USP V) for bank","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":537,"title":"PrivatBank","logoURL":"https://old.roi4cio.com/uploads/roi/company/PrivatBank.png","alias":"privatbank","address":"","roles":[],"description":"Established in 1992, PrivatBank is the leader in Ukrainian banking. According to market research carried out by Gfk Ukraine in the II quarter of 2019, 55,3% of individual clients considered us as their main bank. This percentage exceeded the total percentages of the next twenty banks in the Gfk ranking. This index made up 63,7% for corporate clients.\r\nPrivatBank is one of the world's most innovative banks. Over ten years ago the Bank was among the first banks that started using one-time SMS passwords. Among the recent innovations recognised all over the world, there are such products as payment mini-terminals, login to Internet bank using a QR code, online cash collection, and dozens of different mobile applications.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://privatbank.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"PrivatBank","keywords":"PrivatBank, portfolio, value, loan, paid, budget, national, assets","description":"Established in 1992, PrivatBank is the leader in Ukrainian banking. According to market research carried out by Gfk Ukraine in the II quarter of 2019, 55,3% of individual clients considered us as their main bank. This percentage exceeded the total percentages ","og:title":"PrivatBank","og:description":"Established in 1992, PrivatBank is the leader in Ukrainian banking. According to market research carried out by Gfk Ukraine in the II quarter of 2019, 55,3% of individual clients considered us as their main bank. This percentage exceeded the total percentages ","og:image":"https://old.roi4cio.com/uploads/roi/company/PrivatBank.png"},"eventUrl":""},"supplier":{"id":246,"title":"SI BIS","logoURL":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png","alias":"si-bis","address":"г. Киев, 04073, ул. Рылеева, 10-А +38 (044) 499-12-12","roles":[],"description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT partner for more than 400 Ukrainian companies.\r\n\r\nSI BIS has a high competence in the promotion of integrated IBM solutions, Cisco and the Microsoft, is a recognized leader in the provision of services and technical support, implementing complex consulting projects and provides a wide range of services to optimize the information and business processes for organizations.\r\n\r\nUsing industry experience and global best practices, deep technological expertise, a balanced portfolio of solutions and predictive model of service and technical support, the company SI BIS helps customers to simplify and rationalize the management of their business.","companyTypes":[],"products":{},"vendoredProductsCount":6,"suppliedProductsCount":203,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":42,"vendorImplementationsCount":16,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sibis.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SI BIS","keywords":"solutions, business, technical, services, support, than, more, company","description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:title":"SI BIS","og:description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:image":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png"},"eventUrl":""},"vendors":[{"id":313,"title":"Hitachi Data Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/hitachi.png","alias":"hitachi-data-systems","address":"","roles":[],"description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Division.\r\n\r\nIn 2010 Hitachi Data Systems sold through direct and indirect channels in more than 170 countries and regions. Its customers included over half of the Fortune 100 companies at the time.","companyTypes":[],"products":{},"vendoredProductsCount":5,"suppliedProductsCount":5,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":6,"vendorPartnersCount":0,"supplierPartnersCount":4,"b4r":0,"categories":{},"companyUrl":"www.hds.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hitachi Data Systems","keywords":"Hitachi, Systems, Data, than, channels, more, direct, sold","description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:title":"Hitachi Data Systems","og:description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:image":"https://old.roi4cio.com/uploads/roi/company/hitachi.png"},"eventUrl":""}],"products":[{"id":374,"logo":false,"scheme":false,"title":"Hitachi Universal Storage Platform V","vendorVerified":0,"rating":"2.70","implementationsCount":3,"suppliersCount":0,"alias":"hitachi-universal-storage-platform-v","companyTypes":[],"description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate IOPS - Over 4 million\r\nCache Memory - Number of cache modules 1-32, Module capacity 8 or 16GB, Maximum cache memory 512GB\r\nControl/Shared Memory - Number of control memory modules 1-8, Module capacity 4GB, Maximum control memory 28GB\r\nFront End Directors (Connectivity)\r\nNumber of Directors 1-14\r\nFibre Channel host ports per Director - 8 or 16\r\nFibre Channel port performance - 4, 8 Gbit/s\r\nMaximum Fibre Channel host ports - 224\r\nVirtual host ports - 1,024 per physical port\r\nMaximum IBM FICON host ports - 112\r\nMaximum IBM ESCON host ports - 112\r\nLogical Devices (LUNs) — Maximum Supported\r\nOpen systems 65,536\r\nIBM z/OS 65,536\r\nDisks\r\nType: Flash 73, 146, 200 and 400GB\r\nType: Fibre Channel 146, 300, 450 and 600GB\r\nType: SATA II 1TB, 2TB\r\nNumber of disks per system (min/max) 4-1,152\r\nNumber spare disks per system (min/max) 1-40\r\nMaximum Internal Raw Capacity - (2TB disks) 2,268 TB\r\nMaximum Usable Capacity - RAID-5\r\nOpen systems (2TB disks) 1,972 TB\r\nz/OS-compatible (1TB disks) 931 TB\r\nMaximum Usable Capacity — RAID-6\r\nOpen systems (2TB disks) 1,690TB\r\nz/OS-compatible (1TB disks) 796 TB\r\nMaximum Usable Capacity — RAID-1+\r\nOpen systems (2TB disks) 1,130TB\r\nz/OS-compatible (1TB disks) 527.4TB\r\nOther Features\r\nRAID 1, 10, 5, 6 support\r\nMaximum internal and external capacity 247PB\r\nVirtual Storage Machines 32 max\r\nBack end directors 1-8\r\nOperating System Support\r\nMainframe - Fujitsu: MSP; IBM z/OS, z/OS.e, z/VM, zVSE, TPF; Red Hat; Linux for IBM S/390 and zSeries; SUSE: Linux Enterprise Server for System z.\r\nOpen systems - HP: HP-UX, Tru64 UNIX, Open VMS; IBM AIX; Microsoft Windows Server 2000, 2003, 2008; Novell NetWare; SUSE Linux Enterprise Server; Red Hat Enterprise Linux; SGI IRIX; Sun Microsystems Solaris; VMware ESX and Vsphere, Citrix XENserver\r\n","shortDescription":"At the core of the Universal Storage Platform V and VM is a fully fault tolerant, high performance, non-blocking, silicon based switched architecture designed to provide the bandwidth needed to support infrastructure consolidation of enterprise file and block-based storage services on and behind a single platform.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Universal Storage Platform V","keywords":"Maximum, disks, Number, Open, host, ports, systems, Channel","description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate I","og:title":"Hitachi Universal Storage Platform V","og:description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate I"},"eventUrl":"","translationId":375,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":174,"title":"No unified email system"},{"id":175,"title":"Aging IT infrastructure"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"http://sibis.com.ua/clientproj/banki-i-strakhovaniya/privatbank/modernizatsiya-platformy-khraneniya-dannykh-hitachi-universal-storage-platform-v/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":40,"title":"Hitachi Universal Storage Platform V (USP VM) for Supermarket Backup","description":"Description is not ready yet","alias":"hitachi-universal-storage-platform-v-usp-vm-for-supermarket-backup","roi":0,"seo":{"title":"Hitachi Universal Storage Platform V (USP VM) for Supermarket Backup","keywords":"","description":"Description is not ready yet","og:title":"Hitachi Universal Storage Platform V (USP VM) for Supermarket Backup","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":596,"title":"FOZZY GROUP","logoURL":"https://old.roi4cio.com/uploads/roi/company/FOZZY_GROUP.png","alias":"fozzy-group","address":"","roles":[],"description":"FOZZY GROUP, THE GROUP OF COMPANIES\r\nFozzy Group is one of the largest trade industrial groups in Ukraine and one of the leading Ukrainian retailers, with over 600 outlets all around the country. Besides retail, the Group's businesses interests include food production, bank business, and restaurants.\r\nThe group sells food and household products via its Silpo supermarkets chain and Le Silpo premium stores, wholesale and retail Fozzy hypermarkets, Fora convenience stores, and thrash! discounters chain. Fozzy Group chains stock their own brands of goods Premiya, Premiya Select, Povna Chasha, Povna Charka, Zelena Krayina, Protex, EXTRA!, and others. Silpo supermarkets have a customer loyalty program called Vlasnyi Rakhunok, which, in addition to offering customer rewards, is an effective research and marketing tool for both the chain and for suppliers.\r\nThe group sells non-food products in its Bila Romashka pharmaceutical supermarkets, and ringoo personal electronics stores.\r\nThe major industrial enterprises in the Fozzy Group are the Nizhyn canning business and the Varto poultry factory, Boguslav Food Plant, and Vogni Hestii, LLC (Lights of Hestya).\r\nBanking sector is another Group's business area. Fozzy Group is a key shareholder of PJSC “BANK VOSTOK” and the new operator in the shipping market - Justin.\r\nFozzy Group restaurant business includes the U Hromogo Pola, Staromak, POSITANO, Jiao-bar, ESCOBAR ,WHO&WHY.DRINKERY bar, and two bakeries Boulangerie in Kyiv.\r\nFozzy Group is introducing modern solutions in all areas of its activity. By investing in improving its business processes, the group has achieved leading positions in the retail market. By performing retail chains logistics through its own distribution centers, Fozzy Group has been able to ensure the timely delivery of food to its stores all over Ukraine. In addition, the group operates its own quality control system, ensuring full compliance with its standards in goods storage, transportation and sale.\r\nSince its inception in 1997, Fozzy Group has focused on making innovative business improvements, creating new opportunities for the market and further developing the industry as a whole.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":4,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.fozzy.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"FOZZY GROUP","keywords":"GROUP, Ukrainian, with, retailers, leading, over, country, Besi","description":"FOZZY GROUP, THE GROUP OF COMPANIES\r\nFozzy Group is one of the largest trade industrial groups in Ukraine and one of the leading Ukrainian retailers, with over 600 outlets all around the country. Besides retail, the Group's businesses interests include food pr","og:title":"FOZZY GROUP","og:description":"FOZZY GROUP, THE GROUP OF COMPANIES\r\nFozzy Group is one of the largest trade industrial groups in Ukraine and one of the leading Ukrainian retailers, with over 600 outlets all around the country. Besides retail, the Group's businesses interests include food pr","og:image":"https://old.roi4cio.com/uploads/roi/company/FOZZY_GROUP.png"},"eventUrl":""},"supplier":{"id":246,"title":"SI BIS","logoURL":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png","alias":"si-bis","address":"г. Киев, 04073, ул. Рылеева, 10-А +38 (044) 499-12-12","roles":[],"description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT partner for more than 400 Ukrainian companies.\r\n\r\nSI BIS has a high competence in the promotion of integrated IBM solutions, Cisco and the Microsoft, is a recognized leader in the provision of services and technical support, implementing complex consulting projects and provides a wide range of services to optimize the information and business processes for organizations.\r\n\r\nUsing industry experience and global best practices, deep technological expertise, a balanced portfolio of solutions and predictive model of service and technical support, the company SI BIS helps customers to simplify and rationalize the management of their business.","companyTypes":[],"products":{},"vendoredProductsCount":6,"suppliedProductsCount":203,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":42,"vendorImplementationsCount":16,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sibis.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"SI BIS","keywords":"solutions, business, technical, services, support, than, more, company","description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:title":"SI BIS","og:description":"SI BIS Company specializes in implementing complex projects for the creation of modern communications infrastructure, based on the principles of integration of IT and business solutions. The company was founded in 2003 and has more than 12 years a reliable IT ","og:image":"https://old.roi4cio.com/uploads/roi/company/sibis-logo.png"},"eventUrl":""},"vendors":[{"id":313,"title":"Hitachi Data Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/hitachi.png","alias":"hitachi-data-systems","address":"","roles":[],"description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Division.\r\n\r\nIn 2010 Hitachi Data Systems sold through direct and indirect channels in more than 170 countries and regions. Its customers included over half of the Fortune 100 companies at the time.","companyTypes":[],"products":{},"vendoredProductsCount":5,"suppliedProductsCount":5,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":6,"vendorPartnersCount":0,"supplierPartnersCount":4,"b4r":0,"categories":{},"companyUrl":"www.hds.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hitachi Data Systems","keywords":"Hitachi, Systems, Data, than, channels, more, direct, sold","description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:title":"Hitachi Data Systems","og:description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:image":"https://old.roi4cio.com/uploads/roi/company/hitachi.png"},"eventUrl":""}],"products":[{"id":374,"logo":false,"scheme":false,"title":"Hitachi Universal Storage Platform V","vendorVerified":0,"rating":"2.70","implementationsCount":3,"suppliersCount":0,"alias":"hitachi-universal-storage-platform-v","companyTypes":[],"description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate IOPS - Over 4 million\r\nCache Memory - Number of cache modules 1-32, Module capacity 8 or 16GB, Maximum cache memory 512GB\r\nControl/Shared Memory - Number of control memory modules 1-8, Module capacity 4GB, Maximum control memory 28GB\r\nFront End Directors (Connectivity)\r\nNumber of Directors 1-14\r\nFibre Channel host ports per Director - 8 or 16\r\nFibre Channel port performance - 4, 8 Gbit/s\r\nMaximum Fibre Channel host ports - 224\r\nVirtual host ports - 1,024 per physical port\r\nMaximum IBM FICON host ports - 112\r\nMaximum IBM ESCON host ports - 112\r\nLogical Devices (LUNs) — Maximum Supported\r\nOpen systems 65,536\r\nIBM z/OS 65,536\r\nDisks\r\nType: Flash 73, 146, 200 and 400GB\r\nType: Fibre Channel 146, 300, 450 and 600GB\r\nType: SATA II 1TB, 2TB\r\nNumber of disks per system (min/max) 4-1,152\r\nNumber spare disks per system (min/max) 1-40\r\nMaximum Internal Raw Capacity - (2TB disks) 2,268 TB\r\nMaximum Usable Capacity - RAID-5\r\nOpen systems (2TB disks) 1,972 TB\r\nz/OS-compatible (1TB disks) 931 TB\r\nMaximum Usable Capacity — RAID-6\r\nOpen systems (2TB disks) 1,690TB\r\nz/OS-compatible (1TB disks) 796 TB\r\nMaximum Usable Capacity — RAID-1+\r\nOpen systems (2TB disks) 1,130TB\r\nz/OS-compatible (1TB disks) 527.4TB\r\nOther Features\r\nRAID 1, 10, 5, 6 support\r\nMaximum internal and external capacity 247PB\r\nVirtual Storage Machines 32 max\r\nBack end directors 1-8\r\nOperating System Support\r\nMainframe - Fujitsu: MSP; IBM z/OS, z/OS.e, z/VM, zVSE, TPF; Red Hat; Linux for IBM S/390 and zSeries; SUSE: Linux Enterprise Server for System z.\r\nOpen systems - HP: HP-UX, Tru64 UNIX, Open VMS; IBM AIX; Microsoft Windows Server 2000, 2003, 2008; Novell NetWare; SUSE Linux Enterprise Server; Red Hat Enterprise Linux; SGI IRIX; Sun Microsystems Solaris; VMware ESX and Vsphere, Citrix XENserver\r\n","shortDescription":"At the core of the Universal Storage Platform V and VM is a fully fault tolerant, high performance, non-blocking, silicon based switched architecture designed to provide the bandwidth needed to support infrastructure consolidation of enterprise file and block-based storage services on and behind a single platform.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Universal Storage Platform V","keywords":"Maximum, disks, Number, Open, host, ports, systems, Channel","description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate I","og:title":"Hitachi Universal Storage Platform V","og:description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate I"},"eventUrl":"","translationId":375,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"http://sibis.com.ua/news/443/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":992,"title":"Hitachi Universal Storage Platform V for Ukrainian mobile operator","description":"<span style=\"font-style: italic; \">Description is not ready yet</span>","alias":"hitachi-universal-storage-platform-v-for-ukrainian-mobile-operator","roi":0,"seo":{"title":"Hitachi Universal Storage Platform V for Ukrainian mobile operator","keywords":"","description":"<span style=\"font-style: italic; \">Description is not ready yet</span>","og:title":"Hitachi Universal Storage Platform V for Ukrainian mobile operator","og:description":"<span style=\"font-style: italic; \">Description is not ready yet</span>"},"deal_info":"","user":{"id":349,"title":"Lifecell","logoURL":"https://old.roi4cio.com/uploads/roi/company/lifecell.png","alias":"lifecell","address":"03680, Kyiv, Amosova St., 12, Horizon Park Business Center, floor 14","roles":[],"description":"lifecell is the third largest Ukrainian mobile telephone network operator, (after Kyivstar and Vodafone Ukraine) covering 98.82% of Ukrainian inhabited territory.\r\nThe company is wholly owned by Turkcell.\r\nIn January 2005 Astelit launched GSM-1800 service under the life:) brand, and has attracted 7.6 million contract and prepaid subscribers by December 2007. As of the end of Q3 of 2014, Ukrainian GSM operator life:) serves 13.6 million subscribers of prepaid, contract and corporate subscription. Company provides roaming opportunities in 184 countries via more than 456 roaming partners.\r\nThe operator was the first mobile network operator in Ukraine to introduce EDGE technology that offers high speed data transfer. Now the technology is enabled in 100% life:) network.\r\nAs of today, 6 lifecell customer service centers and 193 exclusive shops operate in 103 cities of Ukraine. In addition, life:) subscribers can order life:) services through 153 branded points of sale and 49 487 GSM and non-GSM sales points throughout Ukraine.\r\nIn 2007, lifecell joined the UN Global Compact, as an initiative to encourage CSR (corporate social responsibility) practices by example. As a Compact signatory, life:) follows the 10 basic principles of human rights, labor standards, environmental protection and anti-corruption measures.\r\nIn June 2011, it was reported that Alfa Group was negotiating a deal to purchase the 45% share in Astelit.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":3,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.lifecell.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Lifecell","keywords":"became, life, January, 2016","description":"lifecell is the third largest Ukrainian mobile telephone network operator, (after Kyivstar and Vodafone Ukraine) covering 98.82% of Ukrainian inhabited territory.\r\nThe company is wholly owned by Turkcell.\r\nIn January 2005 Astelit launched GSM-1800 service unde","og:title":"Lifecell","og:description":"lifecell is the third largest Ukrainian mobile telephone network operator, (after Kyivstar and Vodafone Ukraine) covering 98.82% of Ukrainian inhabited territory.\r\nThe company is wholly owned by Turkcell.\r\nIn January 2005 Astelit launched GSM-1800 service unde","og:image":"https://old.roi4cio.com/uploads/roi/company/lifecell.png"},"eventUrl":""},"supplier":{"id":7517,"title":"TechnoServ Ukraine (TSU)","logoURL":"https://old.roi4cio.com/uploads/roi/company/TSU.png","alias":"tekhnoserv-ukraina-tsu","address":"4, Vaclav Havel blvd.,Kyiv, 03067 Kyiv, n/a 03164, UA","roles":[],"description":" “Technoserv Ukraine” is the Ukrainian system integrator company, started its business in Ukraine in 2006. “Technoserv Ukraine” currently offers the whole spectrum of complex solutions and services to the Ukrainian customers in the field of system integration, building corporate-class info-communication systems and telecommunication networks for communications service providers. \r\n“Technoserv Ukraine” incorporates and develops the informational and engineering systems based on in-house technological developments as well as solutions of the world market leaders of info-communication technologies. Totally more than 50 vendors, including CA, Cisco, IBM, Citrix, EMC, Hitachi Data Systems, HP, Microsoft, NetАpp, Oracle, SAF Tehnika, SAP, VMware are among “Technoserv Ukraine” long-term partners.<br />\r\nThe company has certified specialists in all areas of cooperation with partners, as well as "Service Partner" status of many vendors, thereby providing ongoing technical support of customers’ solutions, including 24x7x365 mode. “Technoserv Ukraine” has its own demonstration laboratory. Timely opportunity to test the performance of the proposed multi-vendor solutions and compatibility of all their components allows reduce the lifetime of the project, minimize customers’ costs and ensure the maximum reliability of implemented systems.<br />\r\nThe main achievement of the company is the number of large implemented projects since 2007.<br />\r\n“Technoserv Ukraine” customers are the largest enterprises of key industries: leading fixed and mobile operators, industry enterprises, financial organizations and banks, energy complex enterprises. Among the company's customers are: Vodafone Ukraine, lifecell, VOLIA, Raffaisen Bank Aval, SBERBANK, Alfa-Bank, Ukrenergo, insurance company "Oranta" and others.<br /><br />“Technoserv Ukraine” company has acquired a reputation of a reliable and competent business partner among its customers, thanks to a team of professionals, flexible project management system, well-functioning system of quality management and innovative approaches. The additional confirmation of "Technoserv Ukraine" comprehensive management system is the Certificate of ISO 9001: 2015 (DSTU ISO 9001: 2015).","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":8,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://tsu.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"TechnoServ Ukraine (TSU)","keywords":"","description":" “Technoserv Ukraine” is the Ukrainian system integrator company, started its business in Ukraine in 2006. “Technoserv Ukraine” currently offers the whole spectrum of complex solutions and services to the Ukrainian customers in the field of system integration,","og:title":"TechnoServ Ukraine (TSU)","og:description":" “Technoserv Ukraine” is the Ukrainian system integrator company, started its business in Ukraine in 2006. “Technoserv Ukraine” currently offers the whole spectrum of complex solutions and services to the Ukrainian customers in the field of system integration,","og:image":"https://old.roi4cio.com/uploads/roi/company/TSU.png"},"eventUrl":""},"vendors":[{"id":313,"title":"Hitachi Data Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/hitachi.png","alias":"hitachi-data-systems","address":"","roles":[],"description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Division.\r\n\r\nIn 2010 Hitachi Data Systems sold through direct and indirect channels in more than 170 countries and regions. Its customers included over half of the Fortune 100 companies at the time.","companyTypes":[],"products":{},"vendoredProductsCount":5,"suppliedProductsCount":5,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":6,"vendorPartnersCount":0,"supplierPartnersCount":4,"b4r":0,"categories":{},"companyUrl":"www.hds.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hitachi Data Systems","keywords":"Hitachi, Systems, Data, than, channels, more, direct, sold","description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:title":"Hitachi Data Systems","og:description":"Hitachi Data Systems (HDS) is a company that provides modular mid-range and high-end computer data storage systems, software and services. It is a wholly owned subsidiary of Hitachi Ltd. and part of the Hitachi Information Systems & Telecommunications Divi","og:image":"https://old.roi4cio.com/uploads/roi/company/hitachi.png"},"eventUrl":""}],"products":[{"id":374,"logo":false,"scheme":false,"title":"Hitachi Universal Storage Platform V","vendorVerified":0,"rating":"2.70","implementationsCount":3,"suppliersCount":0,"alias":"hitachi-universal-storage-platform-v","companyTypes":[],"description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate IOPS - Over 4 million\r\nCache Memory - Number of cache modules 1-32, Module capacity 8 or 16GB, Maximum cache memory 512GB\r\nControl/Shared Memory - Number of control memory modules 1-8, Module capacity 4GB, Maximum control memory 28GB\r\nFront End Directors (Connectivity)\r\nNumber of Directors 1-14\r\nFibre Channel host ports per Director - 8 or 16\r\nFibre Channel port performance - 4, 8 Gbit/s\r\nMaximum Fibre Channel host ports - 224\r\nVirtual host ports - 1,024 per physical port\r\nMaximum IBM FICON host ports - 112\r\nMaximum IBM ESCON host ports - 112\r\nLogical Devices (LUNs) — Maximum Supported\r\nOpen systems 65,536\r\nIBM z/OS 65,536\r\nDisks\r\nType: Flash 73, 146, 200 and 400GB\r\nType: Fibre Channel 146, 300, 450 and 600GB\r\nType: SATA II 1TB, 2TB\r\nNumber of disks per system (min/max) 4-1,152\r\nNumber spare disks per system (min/max) 1-40\r\nMaximum Internal Raw Capacity - (2TB disks) 2,268 TB\r\nMaximum Usable Capacity - RAID-5\r\nOpen systems (2TB disks) 1,972 TB\r\nz/OS-compatible (1TB disks) 931 TB\r\nMaximum Usable Capacity — RAID-6\r\nOpen systems (2TB disks) 1,690TB\r\nz/OS-compatible (1TB disks) 796 TB\r\nMaximum Usable Capacity — RAID-1+\r\nOpen systems (2TB disks) 1,130TB\r\nz/OS-compatible (1TB disks) 527.4TB\r\nOther Features\r\nRAID 1, 10, 5, 6 support\r\nMaximum internal and external capacity 247PB\r\nVirtual Storage Machines 32 max\r\nBack end directors 1-8\r\nOperating System Support\r\nMainframe - Fujitsu: MSP; IBM z/OS, z/OS.e, z/VM, zVSE, TPF; Red Hat; Linux for IBM S/390 and zSeries; SUSE: Linux Enterprise Server for System z.\r\nOpen systems - HP: HP-UX, Tru64 UNIX, Open VMS; IBM AIX; Microsoft Windows Server 2000, 2003, 2008; Novell NetWare; SUSE Linux Enterprise Server; Red Hat Enterprise Linux; SGI IRIX; Sun Microsystems Solaris; VMware ESX and Vsphere, Citrix XENserver\r\n","shortDescription":"At the core of the Universal Storage Platform V and VM is a fully fault tolerant, high performance, non-blocking, silicon based switched architecture designed to provide the bandwidth needed to support infrastructure consolidation of enterprise file and block-based storage services on and behind a single platform.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":2,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Hitachi Universal Storage Platform V","keywords":"Maximum, disks, Number, Open, host, ports, systems, Channel","description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate I","og:title":"Hitachi Universal Storage Platform V","og:description":"\r\nUniversal Storage Platform V Specifications [9]\r\n\r\nFrames (Cabinets) - Integrated Control/Drive Group Frame and 1 to 4 optional Drive Group Frames\r\nUniversal Star Network Crossbar Switch - Number of switches 8\r\nAggregate bandwidth (GB/sec) - 106\r\nAggregate I"},"eventUrl":"","translationId":375,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":390,"title":"Low quality of customer support"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://ko.com.ua/tehnoserv_uvelichil_emkost_sistemy_hraneniya_dannyh_dlya_life_52436","title":"Media"}},"comments":[],"referencesCount":0},{"id":945,"title":"HP BL Servers and HP EVA Storage for iBox","description":"Description is not ready yet","alias":"hp-bl-servers-and-hp-eva-storage-for-ibox","roi":0,"seo":{"title":"HP BL Servers and HP EVA Storage for iBox","keywords":"","description":"Description is not ready yet","og:title":"HP BL Servers and HP EVA Storage for iBox","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":7351,"title":"IBox","logoURL":"https://old.roi4cio.com/uploads/roi/company/ibox.jpg","alias":"ibox","address":"","roles":[],"description":"The “Ibox” company has been working on payment acceptance market since 1991. The business in Ukraine started in 2006.<br />Our company is an absolute leader according to the main efficiency indicators. The network consists of more than 5800 payment terminals all over Ukraine, installed within the sales areas, in the largest retail and gas networks as well as in various stores in 200 cities around Ukraine. IBox terminals allow to do quick and easy financial transactions at a time when necessary in comfortable places. The company has about 450 services from different operators that accept payments from private clients. <br />More than a million customers prefer to make payments every day using Ibox terminals. Creating and developing the payment service “Pay Instantly. IBox Payments”, the company brings to the relationship with clients and partners the idea of natural simplicity and transparency, credibility and confidence.<br />The company is constantly expanding its range services and actively looks into the future.<br />Source: https://www.linkedin.com/company/ibox_3/about/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://ibox.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"IBox","keywords":"","description":"The “Ibox” company has been working on payment acceptance market since 1991. The business in Ukraine started in 2006.<br />Our company is an absolute leader according to the main efficiency indicators. The network consists of more than 5800 payment termi","og:title":"IBox","og:description":"The “Ibox” company has been working on payment acceptance market since 1991. The business in Ukraine started in 2006.<br />Our company is an absolute leader according to the main efficiency indicators. The network consists of more than 5800 payment termi","og:image":"https://old.roi4cio.com/uploads/roi/company/ibox.jpg"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":421,"logo":false,"scheme":false,"title":"HPE ProLiant BL Server Blade","vendorVerified":0,"rating":"2.00","implementationsCount":10,"suppliersCount":0,"alias":"hpe-proliant-bl-server-blade","companyTypes":[],"description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal solution for enterprises and service providers with limited space.\r\n","shortDescription":"HPE ProLiant BL Server Blade with the latest dual-core processors have the same features, capabilities and benefits of rack servers, consuming less energy and are more efficient to use.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant BL Server Blade","keywords":"Blade, ProLiant, Server, ideal, roles, server, changing, solution","description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s","og:title":"HPE ProLiant BL Server Blade","og:description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s"},"eventUrl":"","translationId":422,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"},{"id":10,"title":"Ensure Compliance"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"},{"id":340,"title":"Low quality of customer service"},{"id":350,"title":"No monitoring of corporate IT processes"},{"id":370,"title":"No automated business processes"},{"id":394,"title":"Shortage of information for decision making"},{"id":397,"title":"Insufficient risk management"}]}},"categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://ko.com.ua/vremya_dengi_68929","title":"Media"}},"comments":[],"referencesCount":0},{"id":946,"title":"HP BladeSystem c7000, HP EVA, HP BL servers for retail Allo network","description":"Description is not ready yet","alias":"bladesystem-c7000-hp-eva-hp-bl-servers-for-retail-allo-network","roi":0,"seo":{"title":"HP BladeSystem c7000, HP EVA, HP BL servers for retail Allo network","keywords":"","description":"Description is not ready yet","og:title":"HP BladeSystem c7000, HP EVA, HP BL servers for retail Allo network","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":7352,"title":"Allo (User)","logoURL":"https://old.roi4cio.com/uploads/roi/company/allo_01.png","alias":"allo","address":"Киев, пр. Московский, 8","roles":[],"description":"<span style=\"font-weight: bold;\">Group of Companies "ALLO"</span>\r\n\r\n<ul><li>Retail network "Allo Telecom"</li> </ul>","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":4,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":1,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://allo.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Allo (User)","keywords":"Allo, TelecomWholesale, division, Tsifroteh, network, Retail, Companies, ALLO","description":"<div><span style=\"font-weight: bold;\">Group of Companies "ALLO"</span></div>\r\n<div></div>\r\n<div><ul><li>Retail network "Allo Telecom"</li> </ul></div>","og:title":"Allo (User)","og:description":"<div><span style=\"font-weight: bold;\">Group of Companies "ALLO"</span></div>\r\n<div></div>\r\n<div><ul><li>Retail network "Allo Telecom"</li> </ul></div>","og:image":"https://old.roi4cio.com/uploads/roi/company/allo_01.png"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":417,"logo":false,"scheme":false,"title":"HPE BladeSystem c7000 Enclosures","vendorVerified":0,"rating":"2.40","implementationsCount":12,"suppliersCount":0,"alias":"hpe-bladesystem-c7000-enclosures","companyTypes":[],"description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC input, 3-phase AC input, -48V DC input, and high voltage DC input.\r\n\r\nWhat's new\r\nUniversal high voltage power solution for reduced Datacenter CAPEX & OPEX - 2650W power supply with a wide ranging input supporting 277VAC & 380VDC - Power input module with APP Saf-D-Grid connectors\r\n<span style=\"font-weight: bold;\">Features</span>\r\nExtending the foundation for Converged Infrastructure\r\nThe HP BladeSystem c7000 Enclosure goes beyond just Blade servers. It consolidates server, storage, networking and power management into a single solution that can be managed as a unified environment.\r\nWith demanding workloads, the increased power supply wattage and mid-plane bandwidth aligned with Intelligent Infrastructure technologies such as Platinum Power Supplies, Intelligent Power Module, and Location Discovery Services have enhanced the foundation for converged infrastructure.\r\nHP OneView combines server, storage, and networking with control of your data center environment into a single, integrated management platform architected to deliver lifecycle management for the complete Converged Infrastructure.\r\nWith Onboard Administrator, iLO remote management, and HP OneView you can manage your servers and take complete control regardless of the state of the server operating system.","shortDescription":"The BladeSystem c7000 enclosure provides all the power, cooling, and I/O infrastructure needed to support modular server, interconnect, and storage components today and throughout the next several years. The enclosure is 10U high and holds up to 16 server and/or storage blades plus optional redundant network and storage interconnect modules.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE BladeSystem c7000 Enclosures","keywords":"input, with, power, management, server, Power, storage, Infrastructure","description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i","og:title":"HPE BladeSystem c7000 Enclosures","og:description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i"},"eventUrl":"","translationId":418,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":421,"logo":false,"scheme":false,"title":"HPE ProLiant BL Server Blade","vendorVerified":0,"rating":"2.00","implementationsCount":10,"suppliersCount":0,"alias":"hpe-proliant-bl-server-blade","companyTypes":[],"description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal solution for enterprises and service providers with limited space.\r\n","shortDescription":"HPE ProLiant BL Server Blade with the latest dual-core processors have the same features, capabilities and benefits of rack servers, consuming less energy and are more efficient to use.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant BL Server Blade","keywords":"Blade, ProLiant, Server, ideal, roles, server, changing, solution","description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s","og:title":"HPE ProLiant BL Server Blade","og:description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s"},"eventUrl":"","translationId":422,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":340,"title":"Low quality of customer service"},{"id":370,"title":"No automated business processes"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":397,"title":"Insufficient risk management"}]}},"categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://ko.com.ua/biznes_so_skorostyu_interneta_63934","title":"Media"}},"comments":[],"referencesCount":0},{"id":963,"title":"HP BladeSystem, HP EVA for Ukrainian energy company","description":"Description is not ready yet","alias":"hp-bladesystem-hp-eva-for-ukrainian-energy-company","roi":0,"seo":{"title":"HP BladeSystem, HP EVA for Ukrainian energy company","keywords":"","description":"Description is not ready yet","og:title":"HP BladeSystem, HP EVA for Ukrainian energy company","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":465,"title":"Kyivoblenergo","logoURL":"https://old.roi4cio.com/uploads/roi/company/Kyivoblenergo.jpg","alias":"kyivoblenergo","address":"г.Киев, 04136, ул.Стеценко, 1а","roles":[],"description":"PJSC “Kyivoblenergo” (KOE) is the Ukrainian electricity distribution company specializes in electricity transmission and supplying to the consumers in the Kyiv region.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":2,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.koe.vsei.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Kyivoblenergo","keywords":"electricity, company, region, Kyiv, consumers, owned, leadi, supplying","description":"PJSC “Kyivoblenergo” (KOE) is the Ukrainian electricity distribution company specializes in electricity transmission and supplying to the consumers in the Kyiv region.","og:title":"Kyivoblenergo","og:description":"PJSC “Kyivoblenergo” (KOE) is the Ukrainian electricity distribution company specializes in electricity transmission and supplying to the consumers in the Kyiv region.","og:image":"https://old.roi4cio.com/uploads/roi/company/Kyivoblenergo.jpg"},"eventUrl":""},"supplier":{"id":201,"title":"IT Solutions Ukraine","logoURL":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg","alias":"it-solutions-ukraine","address":"04050, г. Киев , ул. Студенческая, 3","roles":[],"description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field of IT consulting and information security. Fulfills orders for large commercial and state organizations in all regions of Ukraine.<br />When developing possible solutions for the project, the requirements of the customer and the particular infrastructure of the enterprise are taken into account. After that, solutions are offered based on the hardware and software of the world's leading partner manufacturers: HPE, HP inc., Cisco, Lenovo, NetApp, VMware, Oracle, Huawei, Microsoft, TrueConf, APC, MobileIron, ESET, IBM, Fortinet, Veritas, Dell-emc\r\n<span style=\"font-weight: bold;\">IT-Solutions Services</span><br />IT Infrastructure Solutions:\r\n<ul><li>physical (data storage systems, servers, data transmission and cybersecurity devices, construction of server and data processing centers, SCS, VKS, uninterruptible power supply, personal equipment, peripherals, software)</li></ul>\r\n<ul><li>virtualized (servers, storage, network, desktops)</li></ul>\r\n<ul><li>on information security (network, users, email, information security and security events management)</li></ul>\r\nDesign and implementation of infrastructure services:\r\n<ul><li>backup systems</li></ul>\r\n<ul><li>virtualization</li></ul>\r\n<ul><li>cloud services</li></ul>\r\n<ul><li>IT Service Management (ITSM)</li></ul>\r\n<ul><li>information security</li></ul>\r\n<ul><li>monitoring and control systems</li></ul>\r\nConsulting:\r\n<ul><li>data management (storage, backup, recovery)</li></ul>\r\n<ul><li>IT service continuity</li></ul>\r\n<ul><li>analytics (IT audit, business analytics, vScore - preliminary performance assessment for the implementation of virtualization, dScore - data management performance assessment)</li></ul>\r\n<ul><li>Information Security</li></ul>","companyTypes":[],"products":{},"vendoredProductsCount":2,"suppliedProductsCount":228,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":14,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://it-solutions.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"IT Solutions Ukraine","keywords":"Partner, Solutions, projects, Gold, Silver, Business, Enterprise, VMware","description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:title":"IT Solutions Ukraine","og:description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:image":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":417,"logo":false,"scheme":false,"title":"HPE BladeSystem c7000 Enclosures","vendorVerified":0,"rating":"2.40","implementationsCount":12,"suppliersCount":0,"alias":"hpe-bladesystem-c7000-enclosures","companyTypes":[],"description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC input, 3-phase AC input, -48V DC input, and high voltage DC input.\r\n\r\nWhat's new\r\nUniversal high voltage power solution for reduced Datacenter CAPEX & OPEX - 2650W power supply with a wide ranging input supporting 277VAC & 380VDC - Power input module with APP Saf-D-Grid connectors\r\n<span style=\"font-weight: bold;\">Features</span>\r\nExtending the foundation for Converged Infrastructure\r\nThe HP BladeSystem c7000 Enclosure goes beyond just Blade servers. It consolidates server, storage, networking and power management into a single solution that can be managed as a unified environment.\r\nWith demanding workloads, the increased power supply wattage and mid-plane bandwidth aligned with Intelligent Infrastructure technologies such as Platinum Power Supplies, Intelligent Power Module, and Location Discovery Services have enhanced the foundation for converged infrastructure.\r\nHP OneView combines server, storage, and networking with control of your data center environment into a single, integrated management platform architected to deliver lifecycle management for the complete Converged Infrastructure.\r\nWith Onboard Administrator, iLO remote management, and HP OneView you can manage your servers and take complete control regardless of the state of the server operating system.","shortDescription":"The BladeSystem c7000 enclosure provides all the power, cooling, and I/O infrastructure needed to support modular server, interconnect, and storage components today and throughout the next several years. The enclosure is 10U high and holds up to 16 server and/or storage blades plus optional redundant network and storage interconnect modules.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE BladeSystem c7000 Enclosures","keywords":"input, with, power, management, server, Power, storage, Infrastructure","description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i","og:title":"HPE BladeSystem c7000 Enclosures","og:description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i"},"eventUrl":"","translationId":418,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":421,"logo":false,"scheme":false,"title":"HPE ProLiant BL Server Blade","vendorVerified":0,"rating":"2.00","implementationsCount":10,"suppliersCount":0,"alias":"hpe-proliant-bl-server-blade","companyTypes":[],"description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal solution for enterprises and service providers with limited space.\r\n","shortDescription":"HPE ProLiant BL Server Blade with the latest dual-core processors have the same features, capabilities and benefits of rack servers, consuming less energy and are more efficient to use.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant BL Server Blade","keywords":"Blade, ProLiant, Server, ideal, roles, server, changing, solution","description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s","og:title":"HPE ProLiant BL Server Blade","og:description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s"},"eventUrl":"","translationId":422,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":374,"title":"IT infrastructure downtimes"},{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":395,"title":"Decentralization of management"}]}},"categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://it-solutions.ua/portfolio/kievoblenergo/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":1034,"title":"HP DL380G5 for a large Ukrainian bank","description":"<span style=\"font-style: italic; \">Description is not ready yet</span>","alias":"hp-dl380g5-for-a-large-ukrainian-bank","roi":0,"seo":{"title":"HP DL380G5 for a large Ukrainian bank","keywords":"","description":"<span style=\"font-style: italic; \">Description is not ready yet</span>","og:title":"HP DL380G5 for a large Ukrainian bank","og:description":"<span style=\"font-style: italic; \">Description is not ready yet</span>"},"deal_info":"","user":{"id":4195,"title":"Hidden user","logoURL":"https://old.roi4cio.com/uploads/roi/company/hidden_user.jpg","alias":"skrytyi-polzovatel","address":"","roles":[],"description":"User Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":98,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden user","keywords":"Hidden, user, User, Information, confidential","description":"User Information is confidential ","og:title":"Hidden user","og:description":"User Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/hidden_user.jpg"},"eventUrl":""},"supplier":{"id":2701,"title":"VERNA","logoURL":"https://old.roi4cio.com/uploads/roi/company/VERNA.png","alias":"verna","address":"","roles":[],"description":"VERNA is one of the leading IT Integrators, specializing in design, implementation and support of technical solutions, aimed to improve the efficiency of corporate IT systems, - both on-site and on a remote basis. <br />VERNA has spent more than 15 successful years of dynamic development in the MSP area, having implemented 150 + projects for national-wide companies at Ukrainian market as well as outsourced projects for clients from USA and Western Europe.<br />The main customers are large geographically distributed enterprises: banks, retails, industrial enterprises (BNP Paribas Group, GlobalLogic, Volksbank, Kraft, ArcelorMittal, UniCredit Bank and others).<br />Technical expertise and skills of VERNA team are proven by certificates and partnership statuses with Cisco, Microsoft, HP, IBM, APC, Oracle, VMware, Citrix, Intel, Dell, Siemens, Systemax, etc.<br />VERNA specializes in planning, implementation and support of the following solutions:<br />- Virtualization (VMware,Hyper-V, Citrix, Dockers)<br />- Infrastructure (MS Active Directory, Office 365, Azure, AWS amazon)<br />- VoIP (Cisco, asterisk/FreePBX/Elastix)<br />- Unified Communications (Webex, Big Blue Button, Lync, Exchange, SharePoint)<br />- Networking (Cisco, FortiNet, OpenVPN, CheckPoint)<br />- Server & Storage (SAN, NAS, FAS)<br />- Business applications and databases (Microsoft, Oracle, IBM)<br />- VDI and terminal access solutions (Microsoft, VMware, Citrix)<br />- Storage virtualization (DataCore)<br />- DLP and Information Security (Antivirus systems, websence, Fortinet, DeviceLock e t.c.)<br />Source: https://www.linkedin.com/company/verna","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":205,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":41,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.verna.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"VERNA","keywords":"solutions, infrastructure, providing, distributed, geographically, with, core, services","description":"VERNA is one of the leading IT Integrators, specializing in design, implementation and support of technical solutions, aimed to improve the efficiency of corporate IT systems, - both on-site and on a remote basis. <br />VERNA has spent more than 15 successful ","og:title":"VERNA","og:description":"VERNA is one of the leading IT Integrators, specializing in design, implementation and support of technical solutions, aimed to improve the efficiency of corporate IT systems, - both on-site and on a remote basis. <br />VERNA has spent more than 15 successful ","og:image":"https://old.roi4cio.com/uploads/roi/company/VERNA.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":5081,"logo":false,"scheme":false,"title":"HP ProLiant DL380 G5","vendorVerified":0,"rating":"0.00","implementationsCount":2,"suppliersCount":0,"alias":"hp-proliant-dl380-g5","companyTypes":[],"description":"The new HP ProLiant DL380 (DL 380 G5), the largest server in the world, confirms its reputation as a server with unsurpassed uptime and enterprise-level manageability, high performance of two Intel Xeon processors. With a rack height of only 2U, it is great for deployment in rack-mount infrastructure and various applications.<br /><br />The ProLiant DL380 G5 is based on the platform with the new Intel dual-core Xeon® 5000 and 5100 series processors.<br /><br />The new HP ProLiant DL380, the best-selling server of all, confirms its reputation as a server with unmatched uptime and enterprise-level manageability and high-performance dual Intel Xeon processors. With a rack height of only 2U, it is great for deployment in rack-mount infrastructure and for performing various tasks and applications.<br /><br />HP has refined the core server components with a balanced system architecture that maximizes dual-core processor performance and overall system performance for mission-critical applications and virtual server environments. These enhancements include the new HP Smart Array RAID Controllers and Serial Attached SCSI (SAS) Small Form Factor Drives, feature-rich networking devices, increased memory capacity, and high-speed remote access.<br /><br />The HP Integrated Lights Out 2 (iLO 2) system integrated into the HP ProLiant ProLiant DL380 G5 provides the ability to remotely control the server via LAN or the Internet regardless of the status / performance of the server.<br /><br />The latest generation of servers is based on a platform with the new Intel dual-core processors Xeon® 5000 and 5100 series, which implements a huge number of innovations and modern server technologies:<br />\r\n<ul><li>dual-core processors are manufactured according to the 65-nm process technology and have reduced heat;</li></ul>\r\n<ul><li>two independent memory buses with a total bandwidth of up to 21 GB / s at a frequency of 1333 MHz and up to 17 GB / s at a frequency of 1066 MHz;</li></ul>\r\n<ul><li>Fully buffered memory modules with double-row FBDIMM (Fully Buffered DIMM), providing a new memory interface to accelerate data transfer, as well as increasing signal integrity and error detection;</li></ul>\r\n<ul><li>Intel® I / O Acceleration Technology (Intel® I / OAT), which includes the function of unloading the processor when working with the TCP protocol (TCP Offload Engine) and optimized data flow (optimized data movement) through the platform, which allows the network controller to write data directly to RAM;</li></ul>\r\n<ul><li>Enhanced Intel® Virtualization Technology (Intel® VT) virtualization technology, which simplifies the support of virtual machines (VMs), such as VMware ESX, Microsoft Virtual Server or Xen, and improves their implementation;</li></ul>\r\n<ul><li>PCI-Express I / O support for high-performance communications via Ethernet, RAID, InfiniBand, etc.</li></ul>\r\n<br /><br />","shortDescription":"HP ProLiant DL380 G5 is a server for workgroups in the Rackmount 2U form factor with support for SFF disks and the ability to install up to 2 Intel Xeon processors","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":8,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP ProLiant DL380 G5","keywords":"","description":"The new HP ProLiant DL380 (DL 380 G5), the largest server in the world, confirms its reputation as a server with unsurpassed uptime and enterprise-level manageability, high performance of two Intel Xeon processors. With a rack height of only 2U, it is great fo","og:title":"HP ProLiant DL380 G5","og:description":"The new HP ProLiant DL380 (DL 380 G5), the largest server in the world, confirms its reputation as a server with unsurpassed uptime and enterprise-level manageability, high performance of two Intel Xeon processors. With a rack height of only 2U, it is great fo"},"eventUrl":"","translationId":5082,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":10,"title":"Ensure Compliance"},{"id":253,"title":"Expand Sales Geography"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":387,"title":"Non-compliant with IT security requirements"},{"id":395,"title":"Decentralization of management"},{"id":401,"title":"No control over implementation"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://www.verna.ua/projects/tsentry-obrabotki-dannykh/item/296-obespechenie-nepreryvnosti-i-bezopasnosti-raboty-it-sistemy-seti-regionalnykh-otdelenij-odnogo-iz-krupnejshikh-bankov","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":1036,"title":"HP DL380G5 to a large distributor of clothing and footwear","description":"<span style=\"font-style: italic; \">Description is not ready yet</span>","alias":"hp-dl380g5-to-a-large-distributor-of-clothing-and-footwear","roi":0,"seo":{"title":"HP DL380G5 to a large distributor of clothing and footwear","keywords":"","description":"<span style=\"font-style: italic; \">Description is not ready yet</span>","og:title":"HP DL380G5 to a large distributor of clothing and footwear","og:description":"<span style=\"font-style: italic; \">Description is not ready yet</span>"},"deal_info":"","user":{"id":4195,"title":"Hidden user","logoURL":"https://old.roi4cio.com/uploads/roi/company/hidden_user.jpg","alias":"skrytyi-polzovatel","address":"","roles":[],"description":"User Information is confidential ","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":98,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hidden user","keywords":"Hidden, user, User, Information, confidential","description":"User Information is confidential ","og:title":"Hidden user","og:description":"User Information is confidential ","og:image":"https://old.roi4cio.com/uploads/roi/company/hidden_user.jpg"},"eventUrl":""},"supplier":{"id":2701,"title":"VERNA","logoURL":"https://old.roi4cio.com/uploads/roi/company/VERNA.png","alias":"verna","address":"","roles":[],"description":"VERNA is one of the leading IT Integrators, specializing in design, implementation and support of technical solutions, aimed to improve the efficiency of corporate IT systems, - both on-site and on a remote basis. <br />VERNA has spent more than 15 successful years of dynamic development in the MSP area, having implemented 150 + projects for national-wide companies at Ukrainian market as well as outsourced projects for clients from USA and Western Europe.<br />The main customers are large geographically distributed enterprises: banks, retails, industrial enterprises (BNP Paribas Group, GlobalLogic, Volksbank, Kraft, ArcelorMittal, UniCredit Bank and others).<br />Technical expertise and skills of VERNA team are proven by certificates and partnership statuses with Cisco, Microsoft, HP, IBM, APC, Oracle, VMware, Citrix, Intel, Dell, Siemens, Systemax, etc.<br />VERNA specializes in planning, implementation and support of the following solutions:<br />- Virtualization (VMware,Hyper-V, Citrix, Dockers)<br />- Infrastructure (MS Active Directory, Office 365, Azure, AWS amazon)<br />- VoIP (Cisco, asterisk/FreePBX/Elastix)<br />- Unified Communications (Webex, Big Blue Button, Lync, Exchange, SharePoint)<br />- Networking (Cisco, FortiNet, OpenVPN, CheckPoint)<br />- Server & Storage (SAN, NAS, FAS)<br />- Business applications and databases (Microsoft, Oracle, IBM)<br />- VDI and terminal access solutions (Microsoft, VMware, Citrix)<br />- Storage virtualization (DataCore)<br />- DLP and Information Security (Antivirus systems, websence, Fortinet, DeviceLock e t.c.)<br />Source: https://www.linkedin.com/company/verna","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":205,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":41,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.verna.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"VERNA","keywords":"solutions, infrastructure, providing, distributed, geographically, with, core, services","description":"VERNA is one of the leading IT Integrators, specializing in design, implementation and support of technical solutions, aimed to improve the efficiency of corporate IT systems, - both on-site and on a remote basis. <br />VERNA has spent more than 15 successful ","og:title":"VERNA","og:description":"VERNA is one of the leading IT Integrators, specializing in design, implementation and support of technical solutions, aimed to improve the efficiency of corporate IT systems, - both on-site and on a remote basis. <br />VERNA has spent more than 15 successful ","og:image":"https://old.roi4cio.com/uploads/roi/company/VERNA.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":5081,"logo":false,"scheme":false,"title":"HP ProLiant DL380 G5","vendorVerified":0,"rating":"0.00","implementationsCount":2,"suppliersCount":0,"alias":"hp-proliant-dl380-g5","companyTypes":[],"description":"The new HP ProLiant DL380 (DL 380 G5), the largest server in the world, confirms its reputation as a server with unsurpassed uptime and enterprise-level manageability, high performance of two Intel Xeon processors. With a rack height of only 2U, it is great for deployment in rack-mount infrastructure and various applications.<br /><br />The ProLiant DL380 G5 is based on the platform with the new Intel dual-core Xeon® 5000 and 5100 series processors.<br /><br />The new HP ProLiant DL380, the best-selling server of all, confirms its reputation as a server with unmatched uptime and enterprise-level manageability and high-performance dual Intel Xeon processors. With a rack height of only 2U, it is great for deployment in rack-mount infrastructure and for performing various tasks and applications.<br /><br />HP has refined the core server components with a balanced system architecture that maximizes dual-core processor performance and overall system performance for mission-critical applications and virtual server environments. These enhancements include the new HP Smart Array RAID Controllers and Serial Attached SCSI (SAS) Small Form Factor Drives, feature-rich networking devices, increased memory capacity, and high-speed remote access.<br /><br />The HP Integrated Lights Out 2 (iLO 2) system integrated into the HP ProLiant ProLiant DL380 G5 provides the ability to remotely control the server via LAN or the Internet regardless of the status / performance of the server.<br /><br />The latest generation of servers is based on a platform with the new Intel dual-core processors Xeon® 5000 and 5100 series, which implements a huge number of innovations and modern server technologies:<br />\r\n<ul><li>dual-core processors are manufactured according to the 65-nm process technology and have reduced heat;</li></ul>\r\n<ul><li>two independent memory buses with a total bandwidth of up to 21 GB / s at a frequency of 1333 MHz and up to 17 GB / s at a frequency of 1066 MHz;</li></ul>\r\n<ul><li>Fully buffered memory modules with double-row FBDIMM (Fully Buffered DIMM), providing a new memory interface to accelerate data transfer, as well as increasing signal integrity and error detection;</li></ul>\r\n<ul><li>Intel® I / O Acceleration Technology (Intel® I / OAT), which includes the function of unloading the processor when working with the TCP protocol (TCP Offload Engine) and optimized data flow (optimized data movement) through the platform, which allows the network controller to write data directly to RAM;</li></ul>\r\n<ul><li>Enhanced Intel® Virtualization Technology (Intel® VT) virtualization technology, which simplifies the support of virtual machines (VMs), such as VMware ESX, Microsoft Virtual Server or Xen, and improves their implementation;</li></ul>\r\n<ul><li>PCI-Express I / O support for high-performance communications via Ethernet, RAID, InfiniBand, etc.</li></ul>\r\n<br /><br />","shortDescription":"HP ProLiant DL380 G5 is a server for workgroups in the Rackmount 2U form factor with support for SFF disks and the ability to install up to 2 Intel Xeon processors","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":8,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP ProLiant DL380 G5","keywords":"","description":"The new HP ProLiant DL380 (DL 380 G5), the largest server in the world, confirms its reputation as a server with unsurpassed uptime and enterprise-level manageability, high performance of two Intel Xeon processors. With a rack height of only 2U, it is great fo","og:title":"HP ProLiant DL380 G5","og:description":"The new HP ProLiant DL380 (DL 380 G5), the largest server in the world, confirms its reputation as a server with unsurpassed uptime and enterprise-level manageability, high performance of two Intel Xeon processors. With a rack height of only 2U, it is great fo"},"eventUrl":"","translationId":5082,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":10,"title":"Ensure Compliance"},{"id":253,"title":"Expand Sales Geography"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":387,"title":"Non-compliant with IT security requirements"},{"id":395,"title":"Decentralization of management"},{"id":398,"title":"Poor communication and coordination among staff"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://www.verna.ua/projects/tsentry-obrabotki-dannykh/item/295-obespechenie-nepreryvnosti-i-bezopasnosti-raboty-it-sistemy-torgovoj-seti-spetsializirovannykh-magazinov","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":947,"title":"HP EVA, HP Blade System c7000 for Sandora","description":"Description is not ready yet","alias":"hp-eva-hp-blade-system-c7000-for-sandora","roi":0,"seo":{"title":"HP EVA, HP Blade System c7000 for Sandora","keywords":"","description":"Description is not ready yet","og:title":"HP EVA, HP Blade System c7000 for Sandora","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":528,"title":"Sandora","logoURL":"https://old.roi4cio.com/uploads/roi/company/Sandora.png","alias":"sandora","address":"","roles":[],"description":""Sandora" LLC - Ukrainian producer of juices and juice-based products, carbonated beverages. Currently owned by the American company PepsiCo.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://sandora.mk.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Sandora","keywords":"owned, Currently, beverages, PepsiCo, company, American, carbonated, juice-based","description":""Sandora" LLC - Ukrainian producer of juices and juice-based products, carbonated beverages. Currently owned by the American company PepsiCo.","og:title":"Sandora","og:description":""Sandora" LLC - Ukrainian producer of juices and juice-based products, carbonated beverages. Currently owned by the American company PepsiCo.","og:image":"https://old.roi4cio.com/uploads/roi/company/Sandora.png"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":417,"logo":false,"scheme":false,"title":"HPE BladeSystem c7000 Enclosures","vendorVerified":0,"rating":"2.40","implementationsCount":12,"suppliersCount":0,"alias":"hpe-bladesystem-c7000-enclosures","companyTypes":[],"description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC input, 3-phase AC input, -48V DC input, and high voltage DC input.\r\n\r\nWhat's new\r\nUniversal high voltage power solution for reduced Datacenter CAPEX & OPEX - 2650W power supply with a wide ranging input supporting 277VAC & 380VDC - Power input module with APP Saf-D-Grid connectors\r\n<span style=\"font-weight: bold;\">Features</span>\r\nExtending the foundation for Converged Infrastructure\r\nThe HP BladeSystem c7000 Enclosure goes beyond just Blade servers. It consolidates server, storage, networking and power management into a single solution that can be managed as a unified environment.\r\nWith demanding workloads, the increased power supply wattage and mid-plane bandwidth aligned with Intelligent Infrastructure technologies such as Platinum Power Supplies, Intelligent Power Module, and Location Discovery Services have enhanced the foundation for converged infrastructure.\r\nHP OneView combines server, storage, and networking with control of your data center environment into a single, integrated management platform architected to deliver lifecycle management for the complete Converged Infrastructure.\r\nWith Onboard Administrator, iLO remote management, and HP OneView you can manage your servers and take complete control regardless of the state of the server operating system.","shortDescription":"The BladeSystem c7000 enclosure provides all the power, cooling, and I/O infrastructure needed to support modular server, interconnect, and storage components today and throughout the next several years. The enclosure is 10U high and holds up to 16 server and/or storage blades plus optional redundant network and storage interconnect modules.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE BladeSystem c7000 Enclosures","keywords":"input, with, power, management, server, Power, storage, Infrastructure","description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i","og:title":"HPE BladeSystem c7000 Enclosures","og:description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i"},"eventUrl":"","translationId":418,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":177,"title":"Decentralized IT systems"},{"id":354,"title":"Low bandwidth data channels"},{"id":370,"title":"No automated business processes"},{"id":397,"title":"Insufficient risk management"}]}},"categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"http://integritysys.com.ua/success-cod/sandora-cod/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":950,"title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","description":"Description is not ready yet","alias":"hp-eva-hp-bladesystem-hp-3par-storeserv-hp-procurve-for-pepsico","roi":0,"seo":{"title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","keywords":"","description":"Description is not ready yet","og:title":"HP EVA, HP BladeSystem, HP 3PAR StoreServ, HP ProCurve for PepsiCo","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":527,"title":"PepsiCo","logoURL":"https://old.roi4cio.com/uploads/roi/company/PepsiCo.png","alias":"pepsico","address":"","roles":[],"description":"PepsiCo is the world's second-largest food and beverage producer with annual sales of more than $ 65 billion. The company produces a wide range of products, including 22 brands, each year with annual retail sales of more than a billion dollars.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.pepsico.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"PepsiCo","keywords":"annual, company, produces, dollars, wide, including, products, range","description":"PepsiCo is the world's second-largest food and beverage producer with annual sales of more than $ 65 billion. The company produces a wide range of products, including 22 brands, each year with annual retail sales of more than a billion dollars.","og:title":"PepsiCo","og:description":"PepsiCo is the world's second-largest food and beverage producer with annual sales of more than $ 65 billion. The company produces a wide range of products, including 22 brands, each year with annual retail sales of more than a billion dollars.","og:image":"https://old.roi4cio.com/uploads/roi/company/PepsiCo.png"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":48,"logo":false,"scheme":false,"title":"HPE 3PAR StoreServ","vendorVerified":0,"rating":"2.00","implementationsCount":3,"suppliersCount":0,"alias":"hpe-3par-storeserv","companyTypes":[],"description":"<span style=\"background-color: rgb(252, 252, 252); color: rgb(51, 51, 51); font-family: "Metric Light", Arial, sans-serif; font-size: 18px; \">HPE 3PAR StoreServ Storage is a new class of enterprise flash arrays with greater than 3M IOPS, sub-millisecond latencies, a 6x density advantage, and scalability of over 20 PiB of usable capacity for massive consolidation. </span>","shortDescription":"HPE 3PAR StoreServ Scalable to Meet Growing Enterprise Requirements.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":6,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE 3PAR StoreServ","keywords":"StoreServ, 3PAR, scalability, advantage, over, density, usable, massive","description":"<span style=\"background-color: rgb(252, 252, 252); color: rgb(51, 51, 51); font-family: "Metric Light", Arial, sans-serif; font-size: 18px; \">HPE 3PAR StoreServ Storage is a new class of enterprise flash arrays with greater than 3M IOPS, sub-millisec","og:title":"HPE 3PAR StoreServ","og:description":"<span style=\"background-color: rgb(252, 252, 252); color: rgb(51, 51, 51); font-family: "Metric Light", Arial, sans-serif; font-size: 18px; \">HPE 3PAR StoreServ Storage is a new class of enterprise flash arrays with greater than 3M IOPS, sub-millisec"},"eventUrl":"","translationId":103,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":501,"title":"All-flash and Hybrid Storage","alias":"all-flash-and-hybrid-storage","description":" Costs have come down making hybrid and all-flash enterprise storage solutions the preferred choice for storing, processing and moving the massive volumes of business data generated in today’s cloud, mobile and IoT environment.\r\nll-flash storage arrays utilize solid-state drives (SSDs) to deliver high-performance and low-latency workloads using data compression and deduplication technologies. Hybrid Storage combines those same solid-state drives (SSDs) with SAS or NL-SAS drives to offer a more cost-effective storage solution that balances cost with superior performance and high storage density.\r\nBoth options lower the complexity of providing scale-out performance at ultralow latency for data-intensive loads and big data analytics.\r\nWhether you are building a new storage array or refreshing your existing storage infrastructure we will work with you to plan, source, install and configure a storage solution to meet you budgetary and business requirements.","materialsDescription":" <span style=\"font-weight: bold;\">What is flash storage and what is it used for?</span>\r\nFlash storage is any storage repository that uses flash memory. Flash memory comes in many form factors, and you probably use flash storage every day. From a single Flash chip on a simple circuit board attached to your computing device via USB to circuit boards in your phone or MP3 player, to a fully integrated “Enterprise Flash Disk” where lots of chips are attached to a circuit board in a form factor that can be used in place of a spinning disk.\r\n<span style=\"font-weight: bold;\">What is flash storage SSD?</span>\r\nA “Solid State Disk” or EFD “Enterprise Flash Disk” is a fully integrated circuit board where many Flash chips are engineered to represent a single Flash disk. Primarily used to replace a traditional spinning disk, SSDs are used in MP3 players, laptops, servers and enterprise storage systems.\r\n<span style=\"font-weight: bold;\">What is the difference between flash storage and SSD?</span>\r\nFlash storage is a reference to any device that can function as a storage repository. Flash storage can be a simple USB device or a fully integrated All-Flash Storage Array. SSD, “Solid State Disk” is an integrated device designed to replace spinning media, commonly used in enterprise storage arrays.\r\n<span style=\"font-weight: bold;\">What is the difference between flash storage and traditional hard drives?</span>\r\nA traditional hard drive leveraged rotating platters and heads to read data from a magnetic device, comparable to a traditional record player; while flash storage leveraged electronic media or flash memory, to vastly improve performance. Flash eliminates rotational delay and seeks time, functions that add latency to traditional storage media.\r\n<span style=\"font-weight: bold;\">What is the difference between an all-flash array and a hybrid array?</span>\r\nA Hybrid Storage Array uses a combination of spinning disk drives and Flash SSD. Along with the right software, a Hybrid Array can be configured to improve overall performance while reducing cost. An All-Flash-Array is designed to support only SSD media.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Al_flash_and_Hybrid_Storage.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":417,"logo":false,"scheme":false,"title":"HPE BladeSystem c7000 Enclosures","vendorVerified":0,"rating":"2.40","implementationsCount":12,"suppliersCount":0,"alias":"hpe-bladesystem-c7000-enclosures","companyTypes":[],"description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC input, 3-phase AC input, -48V DC input, and high voltage DC input.\r\n\r\nWhat's new\r\nUniversal high voltage power solution for reduced Datacenter CAPEX & OPEX - 2650W power supply with a wide ranging input supporting 277VAC & 380VDC - Power input module with APP Saf-D-Grid connectors\r\n<span style=\"font-weight: bold;\">Features</span>\r\nExtending the foundation for Converged Infrastructure\r\nThe HP BladeSystem c7000 Enclosure goes beyond just Blade servers. It consolidates server, storage, networking and power management into a single solution that can be managed as a unified environment.\r\nWith demanding workloads, the increased power supply wattage and mid-plane bandwidth aligned with Intelligent Infrastructure technologies such as Platinum Power Supplies, Intelligent Power Module, and Location Discovery Services have enhanced the foundation for converged infrastructure.\r\nHP OneView combines server, storage, and networking with control of your data center environment into a single, integrated management platform architected to deliver lifecycle management for the complete Converged Infrastructure.\r\nWith Onboard Administrator, iLO remote management, and HP OneView you can manage your servers and take complete control regardless of the state of the server operating system.","shortDescription":"The BladeSystem c7000 enclosure provides all the power, cooling, and I/O infrastructure needed to support modular server, interconnect, and storage components today and throughout the next several years. The enclosure is 10U high and holds up to 16 server and/or storage blades plus optional redundant network and storage interconnect modules.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE BladeSystem c7000 Enclosures","keywords":"input, with, power, management, server, Power, storage, Infrastructure","description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i","og:title":"HPE BladeSystem c7000 Enclosures","og:description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i"},"eventUrl":"","translationId":418,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4826,"logo":false,"scheme":false,"title":"HP ProCurve Switch 5400zl Series","vendorVerified":0,"rating":"0.00","implementationsCount":3,"suppliersCount":0,"alias":"hp-procurve-switch-5400zl-series","companyTypes":[],"description":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line. The 5400zl series includes 6-slot and 12-slot chassis and associated zl modules and bundles. The foundation for all of these switches is a purpose-built, programmable ProVision ASIC that allows the most demanding networking features, such as Quality of Service (QoS) and security, to be implemented in a scalable yet granular fashion. With 10/100, Gigabit and 10-Gigabit interfaces, integrated PoE+ on 10/100 and 10/100/1000Base-T ports, and a choice of form factors, the 5400zl switches offer excellent investment protection, flexibility, and scalability, as well as ease of deployment, operation, and maintenance.\r\n<span style=\"font-weight: bold;\">Key features</span>\r\n<ul><li>Core, distribution, and advanced access layer</li></ul>\r\n<ul><li>Layer 2 to 4 and intelligent edge feature set</li></ul>\r\n<ul><li>Enterprise-class performance and security</li></ul>\r\n<ul><li>HP ProCurve ONE integrated</li></ul>\r\n<ul><li>Scalable 10/100/1000 and 10-GbE connectivity</li></ul>","shortDescription":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP ProCurve Switch 5400zl Series","keywords":"","description":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line. The 5400zl series includes 6-slot and 12-slot chassis and associated zl modules and bundles. The foundation for all of these switches is a ","og:title":"HP ProCurve Switch 5400zl Series","og:description":"The HP ProCurve Switch 5400zl Series consists of the most advanced intelligent switches in the HP ProCurve product line. The 5400zl series includes 6-slot and 12-slot chassis and associated zl modules and bundles. The foundation for all of these switches is a "},"eventUrl":"","translationId":4827,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":177,"title":"Decentralized IT systems"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":376,"title":"Unstructured data"},{"id":397,"title":"Insufficient risk management"},{"id":400,"title":"High costs"}]}},"categories":[{"id":501,"title":"All-flash and Hybrid Storage","alias":"all-flash-and-hybrid-storage","description":" Costs have come down making hybrid and all-flash enterprise storage solutions the preferred choice for storing, processing and moving the massive volumes of business data generated in today’s cloud, mobile and IoT environment.\r\nll-flash storage arrays utilize solid-state drives (SSDs) to deliver high-performance and low-latency workloads using data compression and deduplication technologies. Hybrid Storage combines those same solid-state drives (SSDs) with SAS or NL-SAS drives to offer a more cost-effective storage solution that balances cost with superior performance and high storage density.\r\nBoth options lower the complexity of providing scale-out performance at ultralow latency for data-intensive loads and big data analytics.\r\nWhether you are building a new storage array or refreshing your existing storage infrastructure we will work with you to plan, source, install and configure a storage solution to meet you budgetary and business requirements.","materialsDescription":" <span style=\"font-weight: bold;\">What is flash storage and what is it used for?</span>\r\nFlash storage is any storage repository that uses flash memory. Flash memory comes in many form factors, and you probably use flash storage every day. From a single Flash chip on a simple circuit board attached to your computing device via USB to circuit boards in your phone or MP3 player, to a fully integrated “Enterprise Flash Disk” where lots of chips are attached to a circuit board in a form factor that can be used in place of a spinning disk.\r\n<span style=\"font-weight: bold;\">What is flash storage SSD?</span>\r\nA “Solid State Disk” or EFD “Enterprise Flash Disk” is a fully integrated circuit board where many Flash chips are engineered to represent a single Flash disk. Primarily used to replace a traditional spinning disk, SSDs are used in MP3 players, laptops, servers and enterprise storage systems.\r\n<span style=\"font-weight: bold;\">What is the difference between flash storage and SSD?</span>\r\nFlash storage is a reference to any device that can function as a storage repository. Flash storage can be a simple USB device or a fully integrated All-Flash Storage Array. SSD, “Solid State Disk” is an integrated device designed to replace spinning media, commonly used in enterprise storage arrays.\r\n<span style=\"font-weight: bold;\">What is the difference between flash storage and traditional hard drives?</span>\r\nA traditional hard drive leveraged rotating platters and heads to read data from a magnetic device, comparable to a traditional record player; while flash storage leveraged electronic media or flash memory, to vastly improve performance. Flash eliminates rotational delay and seeks time, functions that add latency to traditional storage media.\r\n<span style=\"font-weight: bold;\">What is the difference between an all-flash array and a hybrid array?</span>\r\nA Hybrid Storage Array uses a combination of spinning disk drives and Flash SSD. Along with the right software, a Hybrid Array can be configured to improve overall performance while reducing cost. An All-Flash-Array is designed to support only SSD media.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Al_flash_and_Hybrid_Storage.png"},{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://ko.com.ua/pepsico_integrirovannaya_i_katastrofoustojchivaya_102860","title":"Media"}},"comments":[],"referencesCount":0},{"id":948,"title":"HP EVA, HP ProLiant DL360 for Olimp Group","description":"Description is not ready yet","alias":"hp-eva-hp-proliant-dl360-for-olimp-group","roi":0,"seo":{"title":"HP EVA, HP ProLiant DL360 for Olimp Group","keywords":"","description":"Description is not ready yet","og:title":"HP EVA, HP ProLiant DL360 for Olimp Group","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":576,"title":"OLYMP","logoURL":"https://old.roi4cio.com/uploads/roi/company/OLYMP.jpg","alias":"olymp","address":"","roles":[],"description":"OLYMP is one of the largest manufacturers of vodka in Ukraine.\r\nThe company is in the top 5 of distilled spirits manufacturers in the country.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":2,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.olimp.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"OLYMP","keywords":"manufacturers, OLYMP, possesses, country, 16-years, history, spirits, working","description":"OLYMP is one of the largest manufacturers of vodka in Ukraine.\r\nThe company is in the top 5 of distilled spirits manufacturers in the country.","og:title":"OLYMP","og:description":"OLYMP is one of the largest manufacturers of vodka in Ukraine.\r\nThe company is in the top 5 of distilled spirits manufacturers in the country.","og:image":"https://old.roi4cio.com/uploads/roi/company/OLYMP.jpg"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":384,"logo":false,"scheme":false,"title":"HPE ProLiant DL360 Gen9 Server","vendorVerified":0,"rating":"2.00","implementationsCount":2,"suppliersCount":0,"alias":"hpe-proliant-dl360-gen9-server","companyTypes":[],"description":"Does your data center need a performance driven dense 1U server that you can confidently deploy for virtualization, data base, or high-performance computing? The HPE ProLiant DL360 Gen9 Server delivers a 1U chassis with up to two processors, delivering an optimal unit that combines high-performance, low energy consumption, improved uptime, and increased density. Leveraging Intel’s latest E5-2600 v4 processors with 21%1 performance gain, plus the latest HPE 2400MHz DDR4 SmartMemory supporting up to 3 TB and up to 23%2 performance increase. Manage your DL360 Gen9 Server in any IT environment by automating the most essential server lifecycle management tasks WITH OneView and iLO: deploy, update, monitor and maintain with ease.\r\n\r\nWhat's new\r\n\r\nIntel® Xeon® E5-2600 v4 Processors with 21%1 performance gain and up to 22 cores\r\n2400MHz DDR4 memory offering up to 23%2 performance gain and 3.0 TB max capacity with 128GB LRDIMMs\r\nHPE 25Gb Ethernet Adapters to help improve performance with latency sensitive applications\r\nIndustry-leading NVMe PCIe SFF SSDs up to 2.0 TB for low latency and top performance\r\nDirect connect up to (16) drives with HPE Smart Array P840ar Controller\r\nEnhanced security with Trusted Platform Module (TPM) 2.0\r\nFeatures\r\n\r\nDense and Flexible High-Performance Compute Power\r\nThe HPE ProLiant DL360 Gen9 Server has up to (24) HPE DDR4 SmartMemory DIMM slots with up to 3.0 TB max memory, built-in intelligence to improve performance, reduce downtime and energy costs resulting in up to 23% better throughput performance.2\r\nYou have a choice of Embedded 4x1GbE, HPE FlexibleLOM, PCIe standup 1GbE to 10/25GbE to 40GbE adapters which provides flexibility of networking bandwidth and fabric so you can adapt and grow to changing business needs.\r\nAchieve greater capacity with flexible drive configuration options with up to ten SFF, four LFF drive along with option to support up to six NVMe PCIe SSDs delivering optimal performance, capacity, and reliability to meet various customer segments and workload requirements at the right economics.\r\nHPE Persistent Memory, the world’s first Non-volatile DIMM (NVDIMM) optimized on ProLiant, offering unprecedented levels of performance for databases and analytic workloads.\r\nIndustry-Leading Energy Efficiency for a Quicker Return on Your Investment\r\nThe HPE ProLiant DL360 Gen9 Server supports industry standard Intel® Xeon® E5-2600 v3 and E5-2600 v4 processors with up to (22) cores and 3.0 TB of HPE DDR4 SmartMemory.\r\nThe HPE ProLiant DL360 Gen9 Server supports improved ambient temperature standards with HPE Extended Ambient Operating Support (ASHRAE A3 and A4) helping to reduce your cooling expenses.3\r\nHigh efficiency redundant HPE Flexible Slot Power Supplies provide up to 96% efficiency (Titanium), HPE Flexible Slot Battery Backup module and support for the HPE Power Discovery Services offering.\r\nENERGY STAR® qualified server configurations illustrate a continued commitment to helping customers conserve energy and save money.\r\nAgile Infrastructure Management for Accelerating IT Service Delivery\r\nWith the HPE ProLiant DL360 Gen9 Server, HPE OneView provides infrastructure management for automation simplicity across servers, storage and networking.\r\nOnline personalized dashboard for Converged Infrastructure health monitoring and support management with HPE Insight Online.\r\nEmbedded management to deploy, monitor and support your DL360 Gen9 Server remotely, out of band with HPE iLO.\r\nConfigure in Unified Extensible Firmware Interface (UEFI) boot mode, provision local and remote with Intelligent Provisioning and Scripting Toolkits.\r\nOptimize firmware and driver updates and reduce downtime with Smart Update, consisting of Smart Update Manager (SUM) and Service Pack for ProLiant (SPP).\r\nIndustry Leading Serviceability\r\nThe HPE ProLiant DL360 Gen9 Server comes with a complete set of Technology Services, delivering confidence, reducing risk and helping customers realize agility and stability. HPE provides consulting to transform your infrastructure; services to deploy, migrate and support your new ProLiant Servers.\r\nHPE provides consulting advice to transform and modernize your infrastructure; services to deploy, migrate and support your new ProLiant servers and education to help you succeed quickly.","shortDescription":"The HPE ProLiant DL360 Gen9 Server delivers a 1U chassis with up to two processors, delivering an optimal unit that combines high-performance, low energy consumption, improved uptime, and increased density.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":4,"sellingCount":2,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant DL360 Gen9 Server","keywords":"with, ProLiant, performance, Server, DL360, Gen9, your, support","description":"Does your data center need a performance driven dense 1U server that you can confidently deploy for virtualization, data base, or high-performance computing? The HPE ProLiant DL360 Gen9 Server delivers a 1U chassis with up to two processors, delivering an opti","og:title":"HPE ProLiant DL360 Gen9 Server","og:description":"Does your data center need a performance driven dense 1U server that you can confidently deploy for virtualization, data base, or high-performance computing? The HPE ProLiant DL360 Gen9 Server delivers a 1U chassis with up to two processors, delivering an opti"},"eventUrl":"","translationId":385,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"},{"id":373,"title":"IT infrastructure does not meet business tasks"},{"id":376,"title":"Unstructured data"},{"id":387,"title":"Non-compliant with IT security requirements"},{"id":397,"title":"Insufficient risk management"}]}},"categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"http://integritysys.com.ua/success-cod/olimp/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":960,"title":"HP Integrity Superdome for Raiffeisen Bank","description":"Description is not ready yet","alias":"hp-integrity-superdome-for-raiffeisen-bank","roi":0,"seo":{"title":"HP Integrity Superdome for Raiffeisen Bank","keywords":"","description":"Description is not ready yet","og:title":"HP Integrity Superdome for Raiffeisen Bank","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":544,"title":"Raiffeisen Bank Aval","logoURL":"https://old.roi4cio.com/uploads/roi/company/Aval.jpg","alias":"raiffaizen-bank-aval","address":"","roles":[],"description":"Raiffeisen Bank Aval Public Joint Stock Company was registered on March 27, 1992 (operated under the brand name of Joint Stock Postal Pension Bank Aval until September 25, 2006). Since October 2005, the Bank has been part of the Raiffeisen International Bank Holding AG Group, Austria (since October 2010 — Raiffeisen Bank International AG, as of September 30, 2015 the Group held 96.46% of shares in the Bank).\r\nThe Bank provides a broad range of standard and innovative banking services through its nationwide network which comprised, as of September 30, 2015, 617 outlets located in big cities, provincial and community centers throughout Ukraine.\r\nThe Bank has an effective management structure, based on a clear division into business lines and supporting verticals (information technologies, operation support, controlling, security and other) both in the Bank’s Head-office and regional directorates. As a truly international bank, Raiffeisen Bank Aval clearly separates front-office functions from back-office ones to achieve higher quality of client service and enhance risk mitigation.\r\nTraditionally, Raiffeisen Bank Aval is ranked among top Ukrainian banks by trust and recognition of clients, partners and experts, both Ukrainian and international.\r\nThe Bank strives to improve its customer service quality through using its own long-term experience, the valuable expertise of Raiffeisen Bank International network banks and the newest technologies.\r\nSource: https://www.linkedin.com/company/raiffeisen-bank-aval/about/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":6,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.aval.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Raiffeisen Bank Aval","keywords":"Aval, Bank, Raiffeisen, Joint, Stock, name, brand, Postal","description":"Raiffeisen Bank Aval Public Joint Stock Company was registered on March 27, 1992 (operated under the brand name of Joint Stock Postal Pension Bank Aval until September 25, 2006). Since October 2005, the Bank has been part of the Raiffeisen International Bank H","og:title":"Raiffeisen Bank Aval","og:description":"Raiffeisen Bank Aval Public Joint Stock Company was registered on March 27, 1992 (operated under the brand name of Joint Stock Postal Pension Bank Aval until September 25, 2006). Since October 2005, the Bank has been part of the Raiffeisen International Bank H","og:image":"https://old.roi4cio.com/uploads/roi/company/Aval.jpg"},"eventUrl":""},"supplier":{"id":201,"title":"IT Solutions Ukraine","logoURL":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg","alias":"it-solutions-ukraine","address":"04050, г. Киев , ул. Студенческая, 3","roles":[],"description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field of IT consulting and information security. Fulfills orders for large commercial and state organizations in all regions of Ukraine.<br />When developing possible solutions for the project, the requirements of the customer and the particular infrastructure of the enterprise are taken into account. After that, solutions are offered based on the hardware and software of the world's leading partner manufacturers: HPE, HP inc., Cisco, Lenovo, NetApp, VMware, Oracle, Huawei, Microsoft, TrueConf, APC, MobileIron, ESET, IBM, Fortinet, Veritas, Dell-emc\r\n<span style=\"font-weight: bold;\">IT-Solutions Services</span><br />IT Infrastructure Solutions:\r\n<ul><li>physical (data storage systems, servers, data transmission and cybersecurity devices, construction of server and data processing centers, SCS, VKS, uninterruptible power supply, personal equipment, peripherals, software)</li></ul>\r\n<ul><li>virtualized (servers, storage, network, desktops)</li></ul>\r\n<ul><li>on information security (network, users, email, information security and security events management)</li></ul>\r\nDesign and implementation of infrastructure services:\r\n<ul><li>backup systems</li></ul>\r\n<ul><li>virtualization</li></ul>\r\n<ul><li>cloud services</li></ul>\r\n<ul><li>IT Service Management (ITSM)</li></ul>\r\n<ul><li>information security</li></ul>\r\n<ul><li>monitoring and control systems</li></ul>\r\nConsulting:\r\n<ul><li>data management (storage, backup, recovery)</li></ul>\r\n<ul><li>IT service continuity</li></ul>\r\n<ul><li>analytics (IT audit, business analytics, vScore - preliminary performance assessment for the implementation of virtualization, dScore - data management performance assessment)</li></ul>\r\n<ul><li>Information Security</li></ul>","companyTypes":[],"products":{},"vendoredProductsCount":2,"suppliedProductsCount":228,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":14,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://it-solutions.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"IT Solutions Ukraine","keywords":"Partner, Solutions, projects, Gold, Silver, Business, Enterprise, VMware","description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:title":"IT Solutions Ukraine","og:description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:image":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":4925,"logo":false,"scheme":false,"title":"HP Integrity Superdome","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"alias":"hp-integrity-superdome","companyTypes":[],"description":"HP Superdome is the family of enterprise-class high-performance servers manufactured with both the PA-8900 processors (HP 9000 family) and Intel Itanium 2 processors (HP Integrity family). Superdome is represented by three models with 16, 32 and 64 processor sockets. Within the family, there is the possibility of moving from younger models to older ones, which ensures a reduction in initial costs, investment protection and the possibility of a phased increase in system performance. Superdome is a universal hierarchical crossbar architecture specifically designed to work with various types of processors. The main components of the architecture are Cells, Crossbar Backplane, and I / O subsystems.<br />\r\nThe cell board is the main unit of the Superdome system. It is a symmetrical multiprocessor (SMP) containing 4 processor sockets and up to 64 GB of main memory. It is possible (but not necessary) to connect to the cell its own I / O subsystem, which is an I / O basket with 12 PCI-X slots. Each cell can work in different configurations, i.e., be connected to other cells or form an independent independent server. In one system, cell boards can be combined with both PA-RISC processors and Itanium processors.<br />\r\nBackplane patch panels provide a non-blocking connection between cells, their associated memory, and I / O modules. The main principle underlying Superdome is the balanced performance of the system at all levels of the hierarchy in order to exclude the appearance of additional delays when the processors of one cell access the RAM located on other cells. The developed architecture allows the system to demonstrate record performance indicators for various types of tasks, such as operational transaction processing, technical calculations, processing of Internet transactions, analysis of large volumes of data, etc.<br />\r\nA single Superdome system can be logically divided into many hardware independent, software independent partitions, virtual machines, or resource partitions within a single server. Each hardware / software partition or virtual machine is running its own independent operating system. For cells with PA-RISC processors, the operating system is HP-UX 11i, and for cells with Itanium processors, HP-UX, Linux, Microsoft Windows 2003, and OpenVMS.\r\nTo implement effective system management and technical support, the Superdome server family includes:\r\n<ul><li>Event Monitoring System (EMS), an alert service that monitors the status of server hardware, including processors, memory, FC components, system buses, cache, system temperature, battery status, fans, power supplies.</li></ul>\r\n<ul><li>A hardware inventory service in Support Tools Manager (STM) that provides system inventory information, including serial numbers, part numbers, version levels, and so on.</li></ul>\r\n<ul><li>Support Management Station (SMS), which is used to start the process of scanning, diagnostics and testing the platform throughout the life cycle, including upgrades.</li></ul>\r\nThe Superdome family provides customers with investment protection and uptime thanks to a system infrastructure designed to upgrade to next-generation processors.","shortDescription":"HP Superdome is a premium server designed and manufactured by Hewlett Packard Enterprise.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":19,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP Integrity Superdome","keywords":"","description":"HP Superdome is the family of enterprise-class high-performance servers manufactured with both the PA-8900 processors (HP 9000 family) and Intel Itanium 2 processors (HP Integrity family). Superdome is represented by three models with 16, 32 and 64 processor s","og:title":"HP Integrity Superdome","og:description":"HP Superdome is the family of enterprise-class high-performance servers manufactured with both the PA-8900 processors (HP 9000 family) and Intel Itanium 2 processors (HP Integrity family). Superdome is represented by three models with 16, 32 and 64 processor s"},"eventUrl":"","translationId":4926,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"},{"id":10,"title":"Ensure Compliance"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":340,"title":"Low quality of customer service"},{"id":348,"title":"No centralized control over IT systems"},{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":387,"title":"Non-compliant with IT security requirements"}]}},"categories":[{"id":35,"title":"Server","alias":"server","description":"In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.\r\nClient–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.\r\nStrictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not. The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve web pages to users" or "service their requests".\r\nThe server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.\r\nWhile request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.","materialsDescription":" <span style=\"font-weight: bold;\">What is a server?</span>\r\nA server is a software or hardware device that accepts and responds to requests made over a network. The device that makes the request, and receives a response from the server, is called a client. On the Internet, the term "server" commonly refers to the computer system which receives a request for a web document and sends the requested information to the client.\r\n<span style=\"font-weight: bold;\">What are they used for?</span>\r\nServers are used to manage network resources. For example, a user may set up a server to control access to a network, send/receive an e-mail, manage print jobs, or host a website. They are also proficient at performing intense calculations. Some servers are committed to a specific task, often referred to as dedicated. However, many servers today are shared servers which can take on the responsibility of e-mail, DNS, FTP, and even multiple websites in the case of a web server.\r\n<span style=\"font-weight: bold;\">Why are servers always on?</span>\r\nBecause they are commonly used to deliver services that are constantly required, most servers are never turned off. Consequently, when servers fail, they can cause the network users and company many problems. To alleviate these issues, servers are commonly set up to be fault-tolerant.\r\n<span style=\"font-weight: bold;\">What are the examples of servers?</span>\r\nThe following list contains links to various server types:\r\n<ul><li>Application server;</li><li>Blade server;</li><li>Cloud server;</li><li>Database server;</li><li>Dedicated server;</li><li>Domain name service;</li><li>File server;</li><li>Mail server;</li><li>Print server;</li><li>Proxy server;</li><li>Standalone server;</li><li>Web server.</li></ul>\r\n<span style=\"font-weight: bold;\">How do other computers connect to a server?</span>\r\nWith a local network, the server connects to a router or switch that all other computers on the network use. Once connected to the network, other computers can access that server and its features. For example, with a web server, a user could connect to the server to view a website, search, and communicate with other users on the network.\r\nAn Internet server works the same way as a local network server, but on a much larger scale. The server is assigned an IP address by InterNIC, or by a web host.\r\nUsually, users connect to a server using its domain name, which is registered with a domain name registrar. When users connect to the domain name (such as "computerhope.com"), the name is automatically translated to the server's IP address by a DNS resolver.\r\nThe domain name makes it easier for users to connect to the server because the name is easier to remember than an IP address. Also, domain names enable the server operator to change the IP address of the server without disrupting the way that users access the server. The domain name can always remain the same, even if the IP address changes.\r\n<span style=\"font-weight: bold;\">Where are servers stored?</span>\r\nIn a business or corporate environment, a server and other network equipment are often stored in a closet or glasshouse. These areas help isolate sensitive computers and equipment from people who should not have access to them.\r\nServers that are remote or not hosted on-site are located in a data center. With these types of servers, the hardware is managed by another company and configured remotely by you or your company.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Server.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://it-solutions.ua/portfolio/rajfajzen-bank-aval/","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":67,"title":"HP ProLiant BL, HP EVA Storage, HPE BladeSystem c7000 Oilfield Enclosures","description":"Description is not ready yet","alias":"hp-proliant-bl-hp-eva-storage-hpe-bladesystem-c7000-oilfield-enclosures","roi":0,"seo":{"title":"HP ProLiant BL, HP EVA Storage, HPE BladeSystem c7000 Oilfield Enclosures","keywords":"","description":"Description is not ready yet","og:title":"HP ProLiant BL, HP EVA Storage, HPE BladeSystem c7000 Oilfield Enclosures","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":2919,"title":"Ukrnafta","logoURL":"https://old.roi4cio.com/uploads/roi/company/ukrnafta.png","alias":"ukrnafta","address":"","roles":[],"description":"Ukrnafta is the largest oil company in Ukraine. The company’s share in the nation’s oil and gas condensate production in 2015 is 67,9%, while the share in total gas production is 7,6%.\r\nAs of 31 December 2015, PJSC «Ukrnafta» had 82 permits for hydrocarbons extraction (commercial development of reserves).\r\nUkrnafta’s drilling divisions cumulatively own 58 drilling rigs.\r\nUkrnafta owns one of the largest filling stations network in Ukraine in almost every region of Ukraine. As of 31 December 2015, PJSC «Ukrnafta» had 537 filling stations.\r\nUkrnafta is headquartered in Kyiv, Ukraine’s capital. The company is 50%+1 share owned by Naftogaz of Ukraine, a fully state-owned holding company.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":2,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://www.ukrnafta.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Ukrnafta","keywords":"Ukrnafta, Ukraine, share, 2015, company, drilling, December, PJSC","description":"Ukrnafta is the largest oil company in Ukraine. The company’s share in the nation’s oil and gas condensate production in 2015 is 67,9%, while the share in total gas production is 7,6%.\r\nAs of 31 December 2015, PJSC «Ukrnafta» had 82 permits for hydrocarbons ex","og:title":"Ukrnafta","og:description":"Ukrnafta is the largest oil company in Ukraine. The company’s share in the nation’s oil and gas condensate production in 2015 is 67,9%, while the share in total gas production is 7,6%.\r\nAs of 31 December 2015, PJSC «Ukrnafta» had 82 permits for hydrocarbons ex","og:image":"https://old.roi4cio.com/uploads/roi/company/ukrnafta.png"},"eventUrl":""},"supplier":{"id":201,"title":"IT Solutions Ukraine","logoURL":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg","alias":"it-solutions-ukraine","address":"04050, г. Киев , ул. Студенческая, 3","roles":[],"description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field of IT consulting and information security. Fulfills orders for large commercial and state organizations in all regions of Ukraine.<br />When developing possible solutions for the project, the requirements of the customer and the particular infrastructure of the enterprise are taken into account. After that, solutions are offered based on the hardware and software of the world's leading partner manufacturers: HPE, HP inc., Cisco, Lenovo, NetApp, VMware, Oracle, Huawei, Microsoft, TrueConf, APC, MobileIron, ESET, IBM, Fortinet, Veritas, Dell-emc\r\n<span style=\"font-weight: bold;\">IT-Solutions Services</span><br />IT Infrastructure Solutions:\r\n<ul><li>physical (data storage systems, servers, data transmission and cybersecurity devices, construction of server and data processing centers, SCS, VKS, uninterruptible power supply, personal equipment, peripherals, software)</li></ul>\r\n<ul><li>virtualized (servers, storage, network, desktops)</li></ul>\r\n<ul><li>on information security (network, users, email, information security and security events management)</li></ul>\r\nDesign and implementation of infrastructure services:\r\n<ul><li>backup systems</li></ul>\r\n<ul><li>virtualization</li></ul>\r\n<ul><li>cloud services</li></ul>\r\n<ul><li>IT Service Management (ITSM)</li></ul>\r\n<ul><li>information security</li></ul>\r\n<ul><li>monitoring and control systems</li></ul>\r\nConsulting:\r\n<ul><li>data management (storage, backup, recovery)</li></ul>\r\n<ul><li>IT service continuity</li></ul>\r\n<ul><li>analytics (IT audit, business analytics, vScore - preliminary performance assessment for the implementation of virtualization, dScore - data management performance assessment)</li></ul>\r\n<ul><li>Information Security</li></ul>","companyTypes":[],"products":{},"vendoredProductsCount":2,"suppliedProductsCount":228,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":14,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://it-solutions.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"IT Solutions Ukraine","keywords":"Partner, Solutions, projects, Gold, Silver, Business, Enterprise, VMware","description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:title":"IT Solutions Ukraine","og:description":"IT-Solutions has established itself as an experienced IT integrator, reliable partner and supplier.<br />IT-Solutions is an expert in virtualization, management and data storage. Implements modern solutions for IT infrastructure, provides services in the field","og:image":"https://old.roi4cio.com/uploads/roi/company/IT_Solutions.jpg"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":417,"logo":false,"scheme":false,"title":"HPE BladeSystem c7000 Enclosures","vendorVerified":0,"rating":"2.40","implementationsCount":12,"suppliersCount":0,"alias":"hpe-bladesystem-c7000-enclosures","companyTypes":[],"description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC input, 3-phase AC input, -48V DC input, and high voltage DC input.\r\n\r\nWhat's new\r\nUniversal high voltage power solution for reduced Datacenter CAPEX & OPEX - 2650W power supply with a wide ranging input supporting 277VAC & 380VDC - Power input module with APP Saf-D-Grid connectors\r\n<span style=\"font-weight: bold;\">Features</span>\r\nExtending the foundation for Converged Infrastructure\r\nThe HP BladeSystem c7000 Enclosure goes beyond just Blade servers. It consolidates server, storage, networking and power management into a single solution that can be managed as a unified environment.\r\nWith demanding workloads, the increased power supply wattage and mid-plane bandwidth aligned with Intelligent Infrastructure technologies such as Platinum Power Supplies, Intelligent Power Module, and Location Discovery Services have enhanced the foundation for converged infrastructure.\r\nHP OneView combines server, storage, and networking with control of your data center environment into a single, integrated management platform architected to deliver lifecycle management for the complete Converged Infrastructure.\r\nWith Onboard Administrator, iLO remote management, and HP OneView you can manage your servers and take complete control regardless of the state of the server operating system.","shortDescription":"The BladeSystem c7000 enclosure provides all the power, cooling, and I/O infrastructure needed to support modular server, interconnect, and storage components today and throughout the next several years. The enclosure is 10U high and holds up to 16 server and/or storage blades plus optional redundant network and storage interconnect modules.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE BladeSystem c7000 Enclosures","keywords":"input, with, power, management, server, Power, storage, Infrastructure","description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i","og:title":"HPE BladeSystem c7000 Enclosures","og:description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i"},"eventUrl":"","translationId":418,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":421,"logo":false,"scheme":false,"title":"HPE ProLiant BL Server Blade","vendorVerified":0,"rating":"2.00","implementationsCount":10,"suppliersCount":0,"alias":"hpe-proliant-bl-server-blade","companyTypes":[],"description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal solution for enterprises and service providers with limited space.\r\n","shortDescription":"HPE ProLiant BL Server Blade with the latest dual-core processors have the same features, capabilities and benefits of rack servers, consuming less energy and are more efficient to use.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant BL Server Blade","keywords":"Blade, ProLiant, Server, ideal, roles, server, changing, solution","description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s","og:title":"HPE ProLiant BL Server Blade","og:description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s"},"eventUrl":"","translationId":422,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":6,"title":"Ensure Security and Business Continuity"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"}]}},"categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"http://it-solutions.ua/ru/c49-ukrnafta.html","title":"Supplier's web site"}},"comments":[],"referencesCount":0},{"id":944,"title":"HP ProLiant BL, HP ProLiant BL, HP EVA for ECOMARKET chain","description":"Description is not ready yet","alias":"hp-proliant-bl-hp-proliant-bl-hp-eva-for-ecomarket-chain","roi":0,"seo":{"title":"HP ProLiant BL, HP ProLiant BL, HP EVA for ECOMARKET chain","keywords":"","description":"Description is not ready yet","og:title":"HP ProLiant BL, HP ProLiant BL, HP EVA for ECOMARKET chain","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":7350,"title":"EKO market","logoURL":"https://old.roi4cio.com/uploads/roi/company/ekomarket.jpg","alias":"ehko-market","address":"","roles":[],"description":" The all-Ukrainian supermarket chain ECO Market currently has 114 stores in 34 cities of Ukraine. The company employs more than 9,000 thousand people. The network presents food products, household chemicals, essential goods. It also has its own production - cooking and bakeries, some shops have their own confectionery shops.<br />The history of the company began in 2003, when the first EKO market grocery supermarket was opened in Chernigov. In the same year, supermarkets were opened in Sumy, Zaporozhye, Kremenchug, Odessa and Cherkasy. Already in 2004, the number of supermarkets in the chain grew to 18. In 2006, there were 28 ECO chain stores in Ukraine; and in 2010 - 68.<br />In 2015, according to GT Partners, ECO Market took 4th place in the TOP 5 of the largest retail chains in Ukraine.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://www.eko.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"EKO market","keywords":"","description":" The all-Ukrainian supermarket chain ECO Market currently has 114 stores in 34 cities of Ukraine. The company employs more than 9,000 thousand people. The network presents food products, household chemicals, essential goods. It also has its own production - co","og:title":"EKO market","og:description":" The all-Ukrainian supermarket chain ECO Market currently has 114 stores in 34 cities of Ukraine. The company employs more than 9,000 thousand people. The network presents food products, household chemicals, essential goods. It also has its own production - co","og:image":"https://old.roi4cio.com/uploads/roi/company/ekomarket.jpg"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":47,"logo":false,"scheme":false,"title":"HPE ProLiant DL Rack","vendorVerified":0,"rating":"2.00","implementationsCount":1,"suppliersCount":0,"alias":"hpe-proliant-dl-rack","companyTypes":[],"description":"The DL family of servers are the most flexible, reliable, and performance-optimized ProLiant rack servers—ever. HPE continues to provide industry-leading compute innovations, the new HPE ProLiant Gen10 rack portfolio, with flexible choices and versatile design, along with improved energy efficiencies, ultimately lowers your TCO. Integrated with a simplified, but comprehensive management suite and industry-leading support, the ProLiant Gen10 rack portfolio delivers a more reliable, fast, and secure infrastructure solution, helps increase IT staff productivity, and accelerates service delivery. In addition, the rack portfolio is performance-optimized for multi-application workloads to significantly increase the speed of IT operations and enable IT to respond to business needs of any size, faster. The HPE ProLiant Gen10 rack portfolio delivers:\r\n<ul> <li>Up to 71% performance increase and 27% increase in core with the new Intel Xeon Scalable processors</li> <li>Up to 27X faster checkpoint operations enabling significantly faster business operations</li> <li>66% greater memory bandwidth increasing application performance for memory-intensive applications</li> <li>14% more processor cores for greater VM density and 33% greater memory capacity for better VM performance and price/performance using AMD EPYC processors</li> </ul>\r\nThe HPE ProLiant Gen9 rack portfolio delivers the right compute for the right workload at the right economics - every time. They are built to excel for any size business, for any size workload, in any environment with:\r\n<ul> <li>66X faster service delivery with simple automation, saving admin time, and reducing errors from manual steps</li> <li>4X faster workload performance to transform the business, growing revenue, margin, and share</li> </ul>","shortDescription":"ProLiant Servers provide a complete infrastructure that support both your business objectives and your business growth.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":18,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant DL Rack","keywords":"your, ProLiant, business, both, objectives, growth, support, that","description":"The DL family of servers are the most flexible, reliable, and performance-optimized ProLiant rack servers—ever. HPE continues to provide industry-leading compute innovations, the new HPE ProLiant Gen10 rack portfolio, with flexible choices and versatile design","og:title":"HPE ProLiant DL Rack","og:description":"The DL family of servers are the most flexible, reliable, and performance-optimized ProLiant rack servers—ever. HPE continues to provide industry-leading compute innovations, the new HPE ProLiant Gen10 rack portfolio, with flexible choices and versatile design"},"eventUrl":"","translationId":104,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":421,"logo":false,"scheme":false,"title":"HPE ProLiant BL Server Blade","vendorVerified":0,"rating":"2.00","implementationsCount":10,"suppliersCount":0,"alias":"hpe-proliant-bl-server-blade","companyTypes":[],"description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal solution for enterprises and service providers with limited space.\r\n","shortDescription":"HPE ProLiant BL Server Blade with the latest dual-core processors have the same features, capabilities and benefits of rack servers, consuming less energy and are more efficient to use.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant BL Server Blade","keywords":"Blade, ProLiant, Server, ideal, roles, server, changing, solution","description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s","og:title":"HPE ProLiant BL Server Blade","og:description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s"},"eventUrl":"","translationId":422,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":178,"title":"No control over data access"},{"id":342,"title":"Total high cost of ownership of IT infrastructure (TCO)"},{"id":348,"title":"No centralized control over IT systems"},{"id":370,"title":"No automated business processes"},{"id":374,"title":"IT infrastructure downtimes"},{"id":386,"title":"Risk of lost access to data and IT systems"}]}},"categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://ko.com.ua/eko-market_nachnet_s_chistogo_lista_53686","title":"Media"}},"comments":[],"referencesCount":0},{"id":943,"title":"HPE BladeSystems c7000, HP EVA, HP ProLiant BL for Sportmaster network","description":"Description is not ready yet","alias":"hpe-bladesystems-c7000-hp-eva-hp-proliant-bl-for-sportmaster-network","roi":0,"seo":{"title":"HPE BladeSystems c7000, HP EVA, HP ProLiant BL for Sportmaster network","keywords":"","description":"Description is not ready yet","og:title":"HPE BladeSystems c7000, HP EVA, HP ProLiant BL for Sportmaster network","og:description":"Description is not ready yet"},"deal_info":"","user":{},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":417,"logo":false,"scheme":false,"title":"HPE BladeSystem c7000 Enclosures","vendorVerified":0,"rating":"2.40","implementationsCount":12,"suppliersCount":0,"alias":"hpe-bladesystem-c7000-enclosures","companyTypes":[],"description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC input, 3-phase AC input, -48V DC input, and high voltage DC input.\r\n\r\nWhat's new\r\nUniversal high voltage power solution for reduced Datacenter CAPEX & OPEX - 2650W power supply with a wide ranging input supporting 277VAC & 380VDC - Power input module with APP Saf-D-Grid connectors\r\n<span style=\"font-weight: bold;\">Features</span>\r\nExtending the foundation for Converged Infrastructure\r\nThe HP BladeSystem c7000 Enclosure goes beyond just Blade servers. It consolidates server, storage, networking and power management into a single solution that can be managed as a unified environment.\r\nWith demanding workloads, the increased power supply wattage and mid-plane bandwidth aligned with Intelligent Infrastructure technologies such as Platinum Power Supplies, Intelligent Power Module, and Location Discovery Services have enhanced the foundation for converged infrastructure.\r\nHP OneView combines server, storage, and networking with control of your data center environment into a single, integrated management platform architected to deliver lifecycle management for the complete Converged Infrastructure.\r\nWith Onboard Administrator, iLO remote management, and HP OneView you can manage your servers and take complete control regardless of the state of the server operating system.","shortDescription":"The BladeSystem c7000 enclosure provides all the power, cooling, and I/O infrastructure needed to support modular server, interconnect, and storage components today and throughout the next several years. The enclosure is 10U high and holds up to 16 server and/or storage blades plus optional redundant network and storage interconnect modules.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":9,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE BladeSystem c7000 Enclosures","keywords":"input, with, power, management, server, Power, storage, Infrastructure","description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i","og:title":"HPE BladeSystem c7000 Enclosures","og:description":"It includes a shared 7.1 Tbps high-speed NonStop mid-plane for wire-once connectivity of server blades to network and shared storage. Power is delivered through a pooled-power backplane, and power input flexibility is provided with choices of single-phase AC i"},"eventUrl":"","translationId":418,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":419,"logo":false,"scheme":false,"title":"HP EVA Storage","vendorVerified":0,"rating":"2.00","implementationsCount":9,"suppliersCount":0,"alias":"hp-eva-storage","companyTypes":[],"description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, mid-sized organizations count on HP EVA Storage. This fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.\r\n\r\nFor medium-sized companies:\r\nDecrease storage management cost by 20-30%.1\r\nBalance price and performance with dynamic storage tiering and non-disruptive data migration.","shortDescription":"HP EVA Storage - fifth-generation, virtualized storage array provides availability while increasing productivity and capacity utilization.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HP EVA Storage","keywords":"storage, data, while, availability, Storage, increasing, organizations, productivity","description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m","og:title":"HP EVA Storage","og:description":"Overview\r\nEVA_Page\r\nLean IT budgets require more efficient ways of managing data. Driving business growth and agility requires simple yet flexible storage that reduces costs while maintaining application availability.\r\nWith an installed base of over 100,000, m"},"eventUrl":"","translationId":420,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":421,"logo":false,"scheme":false,"title":"HPE ProLiant BL Server Blade","vendorVerified":0,"rating":"2.00","implementationsCount":10,"suppliersCount":0,"alias":"hpe-proliant-bl-server-blade","companyTypes":[],"description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal solution for enterprises and service providers with limited space.\r\n","shortDescription":"HPE ProLiant BL Server Blade with the latest dual-core processors have the same features, capabilities and benefits of rack servers, consuming less energy and are more efficient to use.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":0,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE ProLiant BL Server Blade","keywords":"Blade, ProLiant, Server, ideal, roles, server, changing, solution","description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s","og:title":"HPE ProLiant BL Server Blade","og:description":"HPE ProLiant BL Server Blade allow you to choose the type of connection and storage.\r\n<span style=\"font-weight: bold; \">Benefits:</span>\r\n- HPE ProLiant BL Server Blade are compact and optimized for rapid deployment and changing of server roles;\r\n- The ideal s"},"eventUrl":"","translationId":422,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":7,"title":"Improve Customer Service"},{"id":9,"title":"Support Decision Making"},{"id":10,"title":"Ensure Compliance"},{"id":254,"title":"Centralize management"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":177,"title":"Decentralized IT systems"},{"id":334,"title":"Poor timing of management decision making"},{"id":366,"title":"IT infrastructure consumes a lot of power"},{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":387,"title":"Non-compliant with IT security requirements"},{"id":400,"title":"High costs"}]}},"categories":[{"id":517,"title":"Blade System","alias":"blade-system","description":" A blade server is a stripped-down server computer with a modular design optimized to minimize the use of physical space and energy. Blade servers have many components removed to save space, minimize power consumption and other considerations, while still having all the functional components to be considered a computer. Unlike a rack-mount server, a blade server needs a blade enclosure, which can hold multiple blade servers, providing services such as power, cooling, networking, various interconnects and management. Together, blades and the blade enclosure form a blade system. Different blade providers have differing principles regarding what to include in the blade itself, and in the blade system as a whole.\r\nIn a standard server-rack configuration, one rack unit or 1U—19 inches (480 mm) wide and 1.75 inches (44 mm) tall—defines the minimum possible size of any equipment. The principal benefit and justification of blade computing relates to lifting this restriction so as to reduce size requirements. The most common computer rack form-factor is 42U high, which limits the number of discrete computer devices directly mountable in a rack to 42 components. Blades do not have this limitation. As of 2014, densities of up to 180 servers per blade system (or 1440 servers per rack) are achievable with blade systems.\r\nEnclosure (or chassis) performs many of the non-core computing services found in most computers. Non-blade systems typically use bulky, hot and space-inefficient components, and may duplicate these across many computers that may or may not perform at capacity. By locating these services in one place and sharing them among the blade computers, the overall utilization becomes higher. The specifics of which services are provided varies by vendor.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power.</span></span> Computers operate over a range of DC voltages, but utilities deliver power as AC, and at higher voltages than required within computers. Converting this current requires one or more power supply units (or PSUs). To ensure that the failure of one power source does not affect the operation of the computer, even entry-level servers may have redundant power supplies, again adding to the bulk and heat output of the design.\r\nThe blade enclosure's power supply provides a single power source for all blades within the enclosure. This single power source may come as a power supply in the enclosure or as a dedicated separate PSU supplying DC to multiple enclosures. This setup reduces the number of PSUs required to provide a resilient power supply.\r\nThe popularity of blade servers, and their own appetite for power, has led to an increase in the number of rack-mountable uninterruptible power supply (or UPS) units, including units targeted specifically towards blade servers (such as the BladeUPS).\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Cooling.</span></span> During operation, electrical and mechanical components produce heat, which a system must dissipate to ensure the proper functioning of its components. Most blade enclosures, like most computing systems, remove heat by using fans.\r\nA frequently underestimated problem when designing high-performance computer systems involves the conflict between the amount of heat a system generates and the ability of its fans to remove the heat. The blade's shared power and cooling means that it does not generate as much heat as traditional servers. Newer blade-enclosures feature variable-speed fans and control logic, or even liquid cooling systems that adjust to meet the system's cooling requirements.\r\nAt the same time, the increased density of blade-server configurations can still result in higher overall demands for cooling with racks populated at over 50% full. This is especially true with early-generation blades. In absolute terms, a fully populated rack of blade servers is likely to require more cooling capacity than a fully populated rack of standard 1U servers. This is because one can fit up to 128 blade servers in the same rack that will only hold 42 1U rack mount servers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Networking.</span></span> Blade servers generally include integrated or optional network interface controllers for Ethernet or host adapters for Fibre Channel storage systems or converged network adapter to combine storage and data via one Fibre Channel over Ethernet interface. In many blades at least one interface is embedded on the motherboard and extra interfaces can be added using mezzanine cards.\r\nA blade enclosure can provide individual external ports to which each network interface on a blade will connect. Alternatively, a blade enclosure can aggregate network interfaces into interconnect devices (such as switches) built into the blade enclosure or in networking blades.\r\nBlade servers function well for specific purposes such as web hosting, virtualization, and cluster computing. Individual blades are typically hot-swappable. As users deal with larger and more diverse workloads, they add more processing power, memory and I/O bandwidth to blade servers. Although blade server technology in theory allows for open, cross-vendor system, most users buy modules, enclosures, racks and management tools from the same vendor.\r\nEventual standardization of the technology might result in more choices for consumers; as of 2009 increasing numbers of third-party software vendors have started to enter this growing field.\r\nBlade servers do not, however, provide the answer to every computing problem. One can view them as a form of productized server-farm that borrows from mainframe packaging, cooling, and power-supply technology. Very large computing tasks may still require server farms of blade servers, and because of blade servers' high power density, can suffer even more acutely from the heating, ventilation, and air conditioning problems that affect large conventional server farms.","materialsDescription":" <span style=\"font-weight: bold;\">What is blade server?</span>\r\nA blade server is a server chassis housing multiple thin, modular electronic circuit boards, known as server blades. Each blade is a server in its own right, often dedicated to a single application. The blades are literally servers on a card, containing processors, memory, integrated network controllers, an optional Fiber Channel host bus adaptor (HBA) and other input/output (IO) ports.\r\nBlade servers allow more processing power in less rack space, simplifying cabling and reducing power consumption. According to a SearchWinSystems.com article on server technology, enterprises moving to blade servers can experience as much as an 85% reduction in cabling for blade installations over conventional 1U or tower servers. With so much less cabling, IT administrators can spend less time managing the infrastructure and more time ensuring high availability.\r\nEach blade typically comes with one or two local ATA or SCSI drives. For additional storage, blade servers can connect to a storage pool facilitated by a network-attached storage (NAS), Fiber Channel, or iSCSI storage-area network (SAN). The advantage of blade servers comes not only from the consolidation benefits of housing several servers in a single chassis, but also from the consolidation of associated resources (like storage and networking equipment) into a smaller architecture that can be managed through a single interface.\r\nA blade server is sometimes referred to as a high-density server and is typically used in a clustering of servers that are dedicated to a single task, such as:\r\n<ul><li>File sharing</li><li>Web page serving and caching</li><li>SSL encrypting of Web communication</li><li>The transcoding of Web page content for smaller displays</li><li>Streaming audio and video content</li></ul>\r\nLike most clustering applications, blade servers can also be managed to include load balancing and failover capabilities.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Blade_System.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"},{"id":435,"title":"Rack Server","alias":"rack-server","description":"A rack mount server is a great way to maximize your shelf space by packing a lot of servers into a small space. Rackmount servers are typically easier for administrators to manage due to proximity, modularity and better cable management. Lockable rack cabinet doors and steel server front panels provide an additional level of physical security. Additionally, rack unit designed servers are better able to keep the server components cool than traditional tower form factor. Industry standard 19-inch racks will allow you to easily expand your business without taking up more valuable floor space.\r\nThere is a lot of thought that needs to go into which size rack server is best bet for your project. Both current requirements and future expansion plans need to be taken into account to ensure your server remains capable in the future.\r\nBoth large and small projects can be built on the 1U server platform. "U" stands for unit, “unit”, and this means thickness: server rack 1U = 1.75 inches or 44 mm wide. A reasonable amount of storage can fit within a 1U, processing power has no limits, and some models even allow up to two PCI-Express cards. Modern computer hardware uses much less power than it ever has in the past, which means less heat generation. Some 1U servers to still produce some acoustic noise, but is nowhere near the level of needing earmuffs like the old days. The only reason to go up in size is for additional expansion options.\r\n2U models allow for multiple "low-profile" PCI-Express cards while keeping a compact form factor and also providing some additional storage space. If the plan is to use multiple full height cards, then 3U or 4U servers should be the focus. The 4U models are very popular and offer flexible options. The 3U models do have limitations on expansion card compatibility and are really only for situations where rack space needs to be absolutely optimized (14x3U servers or 10x4U servers can fit in a 42u rack).","materialsDescription":"<span style=\"font-weight: bold;\">What is a ‘rack unit’?</span>\r\nA rack unit is the designated unit of measurement used when describing or quantifying the vertical space you have available in any equipment rack. One unit is equal to 1.75 inches, or 4.45 centimeters. Any equipment that has the ability to be mounted onto a rack is generally designed in a standard size to fit into many different server rack heights. It’s actually been standardized by the Electronic Industries Alliance (EIA). The most common heights are between 8U to 50U, but customization is also a viable option if you’re working with nonstandard sizes.\r\n<span style=\"font-weight: bold;\">Are there any specific ventilation requirements with server racks?</span>\r\nOver 65% of IT equipment failures are directly attributed to inadequate, poorly maintained, or failed air conditioning in the server room. So yes, proper ventilation is a critical part of maintaining any data center. Some cabinet manufacturers construct side panel ventilation instead of front and back ventilation, but experts say it’s inadequate for rack mount servers. This can be especially dangerous if more than one cabinet is being set up at once. The importance of proper ventilation should not be taken lightly, and you should always opt for front to back ventilation except in network applications where the IT equipment exhausts out the side.\r\n<span style=\"font-weight: bold;\">What is meant by ‘server rack depth’?</span>\r\nServer rack depth is a critical aspect of the ventilation process. Connectworld.net says, “Server cabinet depth is important not only because it has to allow room for the depth of the particular equipment to be rack-mounted (deep servers vs. routers or switches), but also it has to allow sufficient room for cables, PDU’s as well as airflow.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Rack_Server.png"}],"additionalInfo":{"budgetNotExceeded":"-1","functionallyTaskAssignment":"-1","projectWasPut":"-1","price":0,"source":{"url":"https://ko.com.ua/sportmaster_konsolidaciya_centralizaciya_virtualizaciya_79911","title":"Media"}},"comments":[],"referencesCount":0},{"id":942,"title":"HPE StoreVirtual VSA for large logistics company","description":"Description is not ready yet","alias":"hpe-storevirtual-vsa-for-large-logistics-company","roi":0,"seo":{"title":"HPE StoreVirtual VSA for large logistics company","keywords":"","description":"Description is not ready yet","og:title":"HPE StoreVirtual VSA for large logistics company","og:description":"Description is not ready yet"},"deal_info":"","user":{"id":7298,"title":"Raben Group","logoURL":"https://old.roi4cio.com/uploads/roi/company/Raben_logo.jpg","alias":"raben-group","address":"","roles":[],"description":" Raben Group is a Third Party Logistics operator with 85 years of experience. Present in 11 markets of the Western, Central, and Eastern Europe with its own logistic network, Raben Group is providing services to small, medium-sized and big companies which have decided to outsource their logistics processes.<br />Source: https://www.linkedin.com/company/the-raben-group/about/","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":0,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":1,"supplierImplementationsCount":0,"vendorImplementationsCount":0,"vendorPartnersCount":0,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"https://raben-group.com/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Raben Group","keywords":"","description":" Raben Group is a Third Party Logistics operator with 85 years of experience. Present in 11 markets of the Western, Central, and Eastern Europe with its own logistic network, Raben Group is providing services to small, medium-sized and big companies which have","og:title":"Raben Group","og:description":" Raben Group is a Third Party Logistics operator with 85 years of experience. Present in 11 markets of the Western, Central, and Eastern Europe with its own logistic network, Raben Group is providing services to small, medium-sized and big companies which have","og:image":"https://old.roi4cio.com/uploads/roi/company/Raben_logo.jpg"},"eventUrl":""},"supplier":{"id":249,"title":"Integrity Systems","logoURL":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png","alias":"integrity-systems","address":"Київ 01032 вул. Саксаганського, 119, оф. 26","roles":[],"description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its activities on solutions using various technologies IT business objectives corporate customers in Ukraine. The main asset is our team of qualified consultants, project managers and engineers, allowing us to offer our clients services that cover the full life cycle of IT solutions - from analyzing business objectives, design, implementation and further maintenance and support.","companyTypes":[],"products":{},"vendoredProductsCount":0,"suppliedProductsCount":197,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":15,"vendorImplementationsCount":0,"vendorPartnersCount":9,"supplierPartnersCount":0,"b4r":0,"categories":{},"companyUrl":"http://integritysys.com.ua/","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Integrity Systems","keywords":"Systems, solutions, Integrity, implementation, design, company, business, objectives","description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:title":"Integrity Systems","og:description":"Integrity Systems is a young company, system integrator dynamic. Integrity Systems specializes in the design and implementation of IT solutions for medium and large enterprises. The company "Systems Integration" was founded in 2007 and focuses its ac","og:image":"https://old.roi4cio.com/uploads/roi/company/integrity_systems.png"},"eventUrl":""},"vendors":[{"id":172,"title":"Hewlett Packard Enterprise","logoURL":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg","alias":"hewlett-packard-enterprise","address":"","roles":[],"description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is a business-focused organization with two divisions: Enterprise Group, which works in servers, storage, networking, consulting and support, and Financial Services. On 4 December HPE reported FY2018 net revenue of $30.9 billion, up 7% from the prior year period.","companyTypes":[],"products":{},"vendoredProductsCount":19,"suppliedProductsCount":19,"supplierImplementations":[],"vendorImplementations":[],"userImplementations":[],"userImplementationsCount":0,"supplierImplementationsCount":0,"vendorImplementationsCount":26,"vendorPartnersCount":0,"supplierPartnersCount":451,"b4r":0,"categories":{},"companyUrl":"www.hpe.com","countryCodes":[],"certifications":[],"isSeller":false,"isSupplier":false,"isVendor":false,"presenterCodeLng":"","seo":{"title":"Hewlett Packard Enterprise","keywords":"Packard, Hewlett, Enterprise, company, 2015, November, Hewlett-Packard, now-split","description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:title":"Hewlett Packard Enterprise","og:description":"The Hewlett Packard Enterprise Company (commonly referred to as HPE) is an American multinational enterprise information technology company based in San Jose, California,[2] founded on 1 November 2015 as part of splitting of the Hewlett-Packard company. HPE is","og:image":"https://old.roi4cio.com/uploads/roi/company/HPE_logo.jpeg"},"eventUrl":""}],"products":[{"id":4844,"logo":false,"scheme":false,"title":"HPE StoreVirtual VSA Software","vendorVerified":0,"rating":"0.00","implementationsCount":2,"suppliersCount":0,"alias":"hpe-storevirtual-vsa-software","companyTypes":[],"description":"For developing converged compute and storage solutions in virtualized environments, HPE StoreVirtual VSA Software delivers high performance shared storage on your choice of servers and SSD or HDD media. Built on proven data services technology, HPE StoreVirtual VSA delivers software-defined storage by virtualizing up to 50TB of disk capacity per server running VMware vSphere, Microsoft Hyper-V or Linux KVM. The HPE StoreVirtual VSA eliminates the need for external shared storage required to implement advanced hypervisor features.\r\nHPE StoreVirtual VSA uses scale-out, distributed clustering to provide a pool of storage with enterprise storage features and simple management at reduced cost. Multiple StoreVirtual VSAs running on multiple servers create a clustered pool of storage with the ability to make data highly available by protecting volumes with Network RAID. Adding more StoreVirtual VSAs to the cluster grows the storage pool. With Network RAID, blocks of data are striped and mirrored across multiple StoreVirtual VSAs, allowing volumes and applications to stay online in the event of disk, storage subsystem or server failure. iSCSI connectivity on HPE StoreVirtual VSA supports the use of the storage pools by hypervisors as well as other applications. HPE StoreVirtual VSA fully supports 1GbE and 10GbE environments for connections to both virtual and physical hosts.<br />\r\nLeverage existing converged infrastructure with StoreVirtual VSA and enable higher levels of protection for business critical data services. Easy to use installation wizards assist in the deployment of HPE StoreVirtual VSA on VMware vSphere or Microsoft HyperV. Using the Centralized Management Console, StoreVirtual VSA can be deployed at remote sites and managed centrally as a virtual storage system.<br /><br /><span style=\"font-weight: bold;\">Benefits</span>\r\n<ul><li>Gain the benefits of an array without requiring a physical storage infrastructure by virtualizing storage resources in a server – reduces cost, footprint, power and cooling</li></ul>\r\n<ul><li>Take advantage of hypervisor advanced features such as vMotion and Live Migration without purchasing external storage system</li></ul>\r\n<ul><li>Create a storage pool which is available to hypervisors and other applications via iSCSI</li></ul>\r\n<ul><li>Comes complete with all storage management features - no additional software needed</li></ul>\r\n<ul><li>Easily build a clustered, highly available converged storage pool on existing servers</li></ul>\r\n<ul><li>Utilize internal (SATA, MDL, SAS, SSD, PCIe Flash) and external (iSCSI, FC, SAS) storage options supported by VMware, Microsoft or Linux as back end storage</li></ul>\r\n<ul><li>Enable disaster recovery (DR) solutions for remote or branch offices that do not have budget, space, or power for servers and a traditional array</li></ul>\r\n<ul><li>Easily replicate volumes between StoreVirtual VSA and 3PAR with Peer Copy</li></ul>\r\n<ul><li>Reduce cost and complexity with integrated backup to HPE StoreOnce systems using HPE RMC software</li></ul>","shortDescription":"The StoreVirtual VSA software delivers the scalability and high availability of HP StoreVirtual arrays to small and midsize customers.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":7,"sellingCount":14,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"HPE StoreVirtual VSA Software","keywords":"","description":"For developing converged compute and storage solutions in virtualized environments, HPE StoreVirtual VSA Software delivers high performance shared storage on your choice of servers and SSD or HDD media. Built on proven data services technology, HPE StoreVirtua","og:title":"HPE StoreVirtual VSA Software","og:description":"For developing converged compute and storage solutions in virtualized environments, HPE StoreVirtual VSA Software delivers high performance shared storage on your choice of servers and SSD or HDD media. Built on proven data services technology, HPE StoreVirtua"},"eventUrl":"","translationId":4845,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":1,"title":"Desktop virtualization","alias":"desktop-virtualization","description":" Desktop virtualization is a virtualization technology that separates an individual's PC applications from his or her desktop. Virtualized desktops are generally hosted on a remote central server, rather than the hard drive of the personal computer. Because the client-server computing model is used in virtualizing desktops, desktop virtualization is also known as client virtualization.\r\nDesktop virtualization provides a way for users to maintain their individual desktops on a single, central server. The users may be connected to the central server through a LAN, WAN or over the Internet.\r\nDesktop virtualization has many benefits, including a lower total cost of ownership (TCO), increased security, reduced energy costs, reduced downtime and centralized management.\r\nLimitations of desktop virtualization include difficulty in maintenance and set up of printer drivers; increased downtime in case of network failures; complexity and costs involved in VDI deployment and security risks in the event of improper network management.<br /><br />","materialsDescription":" <span style=\"font-weight: bold; \">What are types of desktop virtualization technologies?</span>\r\nHost-based forms of desktop virtualization require that users view and interact with their virtual desktops over a network by using a remote display protocol. Because processing takes place in a data center, client devices can be traditional PCs, but also thin clients, zero clients, smartphones and tablets. Examples of host-based desktop virtualization technology include:\r\n<span style=\"font-weight: bold; \">Host-based virtual machines:</span> Each user connects to an individual VM that is hosted in a data center. The user may connect to the same VM every time, allowing for personalization (known as a persistent desktop), or be given a fresh VM at each login (a nonpersistent desktop).\r\n<span style=\"font-weight: bold; \">Shared hosted:</span> Users connect to a shared desktop that runs on a server. Microsoft Remote Desktop Services, formerly Terminal Services, takes this client-server approach. Users may also connect to individual applications running on a server; this technology is an example of application virtualization.\r\n<span style=\"font-weight: bold; \">Host-based physical machines:</span> The operating system runs directly on another device's physical hardware.\r\nClient virtualization requires processing to occur on local hardware; the use of thin clients, zero clients and mobile devices is not possible. These types of desktop virtualization include:\r\n<span style=\"font-weight: bold; \">OS image streaming:</span> The operating system runs on local hardware, but it boots to a remote disk image across the network. This is useful for groups of desktops that use the same disk image. OS image streaming, also known as remote desktop virtualization, requires a constant network connection in order to function.\r\n<span style=\"font-weight: bold; \">Client-based virtual machines:</span> A VM runs on a fully functional PC, with a hypervisor in place. Client-based virtual machines can be managed by regularly syncing the disk image with a server, but a constant network connection is not necessary in order for them to function.\r\n<span style=\"font-weight: bold;\">Desktop virtualization vs. virtual desktop infrastructure</span>\r\nThe terms <span style=\"font-style: italic;\">desktop virtualization</span> and virtual desktop infrastructure (VDI) are often used interchangeably, but they are not the same. While VDI is a type of desktop virtualization, not all desktop virtualization uses VDI.\r\nVDI refers to the use of host-based VMs to deliver virtual desktops, which emerged in 2006 as an alternative to Terminal Services and Citrix's client-server approach to desktop virtualization technology. Other types of desktop virtualization -- including the shared hosted model, host-based physical machines and all methods of client virtualization -- are not examples of VDI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Desktop_virtualization.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"countries":[{"id":217,"title":"Ukraine","name":"UKR"}],"startDate":"0000-00-00","endDate":"0000-00-00","dealDate":"0000-00-00","price":0,"status":"finished","statusLabel":"Finished","isImplementation":true,"isAgreement":false,"confirmed":1,"implementationDetails":{"businessObjectives":{"id":14,"title":"Business objectives","translationKey":"businessObjectives","options":[{"id":4,"title":"Reduce Costs"},{"id":5,"title":"Enhance Staff Productivity"},{"id":6,"title":"Ensure Security and Business Continuity"},{"id":306,"title":"Manage Risks"}]},"businessProcesses":{"id":11,"title":"Business process","translationKey":"businessProcesses","options":[{"id":175,"title":"Aging IT infrastructure"},{"id":180,"title":"Inability to forecast execution timelines"},{"id":346,"title":"Shortage of inhouse IT resources"},{"id":370,"title":"No automated business processes"},{"id":386,"title":"Risk of lost access to data and IT systems"},{"id":393,"title":"Complex and non-transparent business processes"}]}},"categories":[{"id":1,"title":"Desktop virtualization","alias":"desktop-virtualization","description":" Desktop virtualization is a virtualization technology that separates an individual's PC applications from his or her desktop. Virtualized desktops are generally hosted on a remote central server, rather than the hard drive of the personal computer. Because the client-server computing model is used in virtualizing desktops, desktop virtualization is also known as client virtualization.\r\nDesktop virtualization provides a way for users to maintain their individual desktops on a single, central server. The users may be connected to the central server through a LAN, WAN or over the Internet.\r\nDesktop virtualization has many benefits, including a lower total cost of ownership (TCO), increased security, reduced energy costs, reduced downtime and centralized management.\r\nLimitations of desktop virtualization include difficulty in maintenance and set up of printer drivers; increased downtime in case of network failures; complexity and costs involved in VDI deployment and security risks in the event of improper network management.<br /><br />","materialsDescription":" <span style=\"font-weight: bold; \">What are types of desktop virtualization technologies?</span>\r\nHost-based forms of desktop virtualization require that users view and interact with their virtual desktops over a network by using a remote display protocol. Because processing takes place in a data center, client devices can be traditional PCs, but also thin clients, zero clients, smartphones and tablets. Examples of host-based desktop virtualization technology include:\r\n<span style=\"font-weight: bold; \">Host-based virtual machines:</span> Each user connects to an individual VM that is hosted in a data center. The user may connect to the same VM every time, allowing for personalization (known as a persistent desktop), or be given a fresh VM at each login (a nonpersistent desktop).\r\n<span style=\"font-weight: bold; \">Shared hosted:</span> Users connect to a shared desktop that runs on a server. Microsoft Remote Desktop Services, formerly Terminal Services, takes this client-server approach. Users may also connect to individual applications running on a server; this technology is an example of application virtualization.\r\n<span style=\"font-weight: bold; \">Host-based physical machines:</span> The operating system runs directly on another device's physical hardware.\r\nClient virtualization requires processing to occur on local hardware; the use of thin clients, zero clients and mobile devices is not possible. These types of desktop virtualization include:\r\n<span style=\"font-weight: bold; \">OS image streaming:</span> The operating system runs on local hardware, but it boots to a remote disk image across the network. This is useful for groups of desktops that use the same disk image. OS image streaming, also known as remote desktop virtualization, requires a constant network connection in order to function.\r\n<span style=\"font-weight: bold; \">Client-based virtual machines:</span> A VM runs on a fully functional PC, with a hypervisor in place. Client-based virtual machines can be managed by regularly syncing the disk image with a server, but a constant network connection is not necessary in order for them to function.\r\n<span style=\"font-weight: bold;\">Desktop virtualization vs. virtual desktop infrastructure</span>\r\nThe terms <span style=\"font-style: italic;\">desktop virtualization</span> and virtual desktop infrastructure (VDI) are often used interchangeably, but they are not the same. While VDI is a type of desktop virtualization, not all desktop virtualization uses VDI.\r\nVDI refers to the use of host-based VMs to deliver virtual desktops, which emerged in 2006 as an alternative to Terminal Services and Citrix's client-server approach to desktop virtualization technology. Other types of desktop virtualization -- including the shared hosted model, host-based physical machines and all methods of client virtualization -- are not examples of VDI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Desktop_virtualization.png"},{"id":7,"title":"Storage - General-Purpose Disk Arrays","alias":"storage-general-purpose-disk-arrays","description":" General-purpose disk arrays refer to disk storage systems that work together with specialized array controllers to achieve high data transfer. They are designed to fulfill the requirement of a diverse set of workloads such as databases, virtual desktop infrastructure, and virtual networks. The market size in the study represents the revenue generated through various deployment modes such as NAS, SAN, and DAS. Some of the technologies used in the general-purpose disk arrays market include PATA, SATA, and SCSI. The application areas of general-purpose disk arrays include BFSI, IT, government, education & research, healthcare, and manufacturing.\r\nGeneral-Purpose Disk Arrays market in BFSI accounts for the largest revenue. IT industry and governments are investing heavily in the general-purpose disk arrays, as a huge amount of voluminous data is getting generated which requires high storage capacity to store the classified data for analytics purpose and consumer insights. General-Purpose Disk Arrays market in healthcare is expected to show robust growth during the forecast period, as hospitals are adopting the latest technology with huge storage spaces in an attempt to track the patient history for providing better healthcare facilities.\r\nThe global general-purpose disk arrays market is fragmented owing to the presence of a large number of local and regional players, which intensifies the degree of rivalry. The market is growing at a notable pace, which leads to high intensity of rivalry. Key market players such as Dell EMC, HPE, and IBM Corporation seek to gain market share through continuous innovations in storage technology. Some of the other key players operating in a market are Hitachi, Seagate Technologies, NetApp, Promise Technologies, Quantum Corporation, Oracle Corporation, Fujitsu, DataDirect Networks, and Infortrend Technology Inc. Key competitors are specifically focusing on Asia-Pacific and Middle-East & Africa regions, as they show strong tendency to adopt the general-purpose disk arrays in coming years.","materialsDescription":"<span style=\"font-weight: bold;\">What are the characteristics of storage?</span>\r\nStorage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Volatility</span></span>\r\nNon-volatile memory retains the stored information even if not constantly supplied with electric power. It is suitable for long-term storage of information. Volatile memory requires constant power to maintain the stored information. The fastest memory technologies are volatile ones, although that is not a universal rule. Since the primary storage is required to be very fast, it predominantly uses volatile memory.\r\nDynamic random-access memory is a form of volatile memory that also requires the stored information to be periodically reread and rewritten, or refreshed, otherwise it would vanish. Static random-access memory is a form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied; it loses its content when the power supply is lost.\r\nAn uninterruptible power supply (UPS) can be used to give a computer a brief window of time to move information from primary volatile storage into non-volatile storage before the batteries are exhausted. Some systems, for example EMC Symmetrix, have integrated batteries that maintain volatile storage for several minutes.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Mutability</span></span>\r\n<span style=\"font-weight: bold;\">Read/write storage or mutable storage</span>\r\n<div class=\"indent\">Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.</div>\r\n<span style=\"font-weight: bold;\">Slow write, fast read storage</span>\r\n<div class=\"indent\">Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and SSD.</div>\r\n<span style=\"font-weight: bold;\">Write once storage</span>\r\n<div class=\"indent\">Write Once Read Many (WORM) allows the information to be written only once at some point after manufacture. Examples include semiconductor programmable read-only memory and CD-R.</div>\r\n<span style=\"font-weight: bold;\">Read only storage</span>\r\n<div class=\"indent\">Retains the information stored at the time of manufacture. Examples include mask ROM ICs and CD-ROM.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Accessibility</span></span>\r\n<span style=\"font-weight: bold;\">Random access</span>\r\n<div class=\"indent\">Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage. Most semiconductor memories and disk drives provide random access.</div>\r\n<span style=\"font-weight: bold;\">Sequential access</span>\r\n<div class=\"indent\">The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Addressability</span></span>\r\n<span style=\"font-weight: bold;\">Location-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.</div>\r\n<span style=\"font-weight: bold;\">File addressable</span>\r\n<div class=\"indent\">Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.</div>\r\n<span style=\"font-weight: bold;\">Content-addressable</span>\r\n<div class=\"indent\">Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.</div>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Capacity</span></span>\r\n<span style=\"font-weight: bold;\">Raw capacity</span>\r\n<div class=\"indent\">The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).</div>\r\n<span style=\"font-weight: bold;\">Memory storage density</span>\r\n<div class=\"indent\">The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).</div>\r\n\r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Performance</span></span>\r\n<span style=\"font-weight: bold;\">Latency</span>\r\n<div class=\"indent\">The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency (especially for non-volatile memory[8]) and in case of sequential access storage, minimum, maximum and average latency.</div>\r\n<span style=\"font-weight: bold;\">Throughput</span>\r\n<div class=\"indent\">The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second (MB/s), though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.</div>\r\n<span style=\"font-weight: bold;\">Granularity</span>\r\n<div class=\"indent\">The size of the largest "chunk" of data that can be efficiently accessed as a single unit, e.g. without introducing additional latency.</div>\r\n<span style=\"font-weight: bold;\">Reliability</span>\r\n<div class=\"indent\">The probability of spontaneous bit value change under various conditions, or overall failure rate.</div>\r\nUtilities such as hdparm and sar can be used to measure IO performance in Linux.\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Energy use</span></span>\r\n<ul><li>Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption by 90 percent.</li><li>2.5-inch hard disk drives often consume less power than larger ones. Low capacity solid-state drives have no moving parts and consume less power than hard disks. Also, memory may use more power than hard disks. Large caches, which are used to avoid hitting the memory wall, may also consume a large amount of power.</li></ul>\r\n\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Security</span></span>\r\nFull disk encryption, volume and virtual disk encryption, andor file/folder encryption is readily available for most storage devices.\r\nHardware memory encryption is available in Intel Architecture, supporting Total Memory Encryption (TME) and page granular memory encryption with multiple keys (MKTME) and in SPARC M7 generation since October 2015.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Storage_General_Purpose_Disk_Arrays.png"}],"additionalInfo":{"budgetNotExceeded":"","functionallyTaskAssignment":"","projectWasPut":"","price":0,"source":{"url":"https://ko.com.ua/it-proekt_v_raben_ukraina_112315","title":"Media"}},"comments":[],"referencesCount":0}]}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}