The VADO One Way Data Diode appliance is designed to allow unidirectional data transfer to networks
About Product
About Product
Description
VADO Security develops and markets Network Data Diodes for national governments, Gas & Oil Industries, Banking and more, guarding against cyber attacks. Vado is a manufacturer of data diode systems. The Vado diode is composed of hardware & software (called "agents"). The hardware diode is composed of a TX hardware unit and an RX hardware unit. The units are connected to servers on each side via ethernet cables and connected to each other (TX to RX) via a single fiber optic cable.The VADO One Way Data Diode appliance is designed to allow unidirectional data transfer to networks that must be physically detached for security reasons, such as R&D and production systems in the defense industry.The main features of VADO One Way Data Diode:
Proven Technology
100% hack proof Technology for all 100 Mb & 1G systems
Log Management
System Action Logs & File transfer logs. Sent via Email, Syslog or File
User Interface
Central & Intuitive User Interface
Data Transfer Reliability
Reliability of Data transfer with unique ERD system
Virtual Machine Support
OS Virtual Machine Support for all Software Agents (No Change at Hardware Level)
Windows OS Support
Works with all Windows OS (32,64), Server or PC & VM (Patent Pending)
High Availability
High Availability for all Data Diode Agents & Hardware
Pre & Post Send Scripts Option
Ability to Activate Scripts on Files Pre/Post Send/Receive Per Channel
Multi-Agents
Ability to use Multi-Agents on One Server With One Hardware System
{"global":{"lastError":{},"locale":"en","locales":{"data":[{"id":"de","name":"Deutsch"},{"id":"en","name":"English"}],"loading":false,"error":false},"currency":{"id":49,"name":"EUR"},"currencies":{"data":[{"id":49,"name":"EUR"},{"id":124,"name":"RUB"},{"id":153,"name":"UAH"},{"id":155,"name":"USD"}],"loading":false,"error":false},"translations":{"product":{"reference-bonus":{"ru":"Предложить бонус за референс","_type":"localeString","en":"Offer a reference bonus"},"configurator":{"ru":"Конфигуратор","_type":"localeString","en":"Сonfigurator"},"i-sell-it":{"_type":"localeString","en":"I sell it","ru":"I sell it"},"i-use-it":{"en":"I use it","ru":"I use it","_type":"localeString"},"roi-calculator":{"en":"ROI-calculator","ru":"ROI-калькулятор","_type":"localeString"},"selling":{"ru":"Продают","_type":"localeString","en":"Selling"},"using":{"en":"Using","ru":"Используют","_type":"localeString"},"show-more-button":{"_type":"localeString","en":"Show more","ru":"Показать еще"},"hide-button":{"ru":"Скрыть","_type":"localeString","en":"Hide"},"supplier-popover":{"en":"supplier","ru":"поставщик","_type":"localeString"},"implementation-popover":{"_type":"localeString","en":"deployment","ru":"внедрение"},"manufacturer-popover":{"ru":"производитель","_type":"localeString","en":"manufacturer"},"short-description":{"ru":"Краткое описание","_type":"localeString","en":"Pitch"},"i-use-it-popover":{"en":"Make your introduction and get a bonus from ROI4CIO or the supplier.","ru":"Внесите свое внедрение и получите бонус от ROI4CIO или поставщика.","_type":"localeString"},"details":{"_type":"localeString","en":"Details","ru":"Детальнее"},"description":{"en":"Description","ru":"Описание","_type":"localeString"},"product-features":{"ru":"Особенности продукта","_type":"localeString","en":"Product features"},"categories":{"ru":"Категории","_type":"localeString","en":"Categories"},"solutions":{"ru":"Проблемы которые решает","_type":"localeString","en":" Problems that solves"},"values":{"ru":"Ценности","_type":"localeString","en":"Values"},"сomparison-matrix":{"en":"Comparison matrix","ru":"Матрица сравнения","_type":"localeString"},"testing":{"en":"Testing","ru":"Тестирование","_type":"localeString"},"compare":{"_type":"localeString","en":"Compare with competitors","ru":"Сравнить с конкурентами"},"characteristics":{"en":" Characteristics","ru":"Характеристики","_type":"localeString"},"transaction-features":{"en":"Transaction Features","ru":"Особенности сделки","_type":"localeString"},"average-discount":{"en":"Partner average discount","ru":"Средняя скидка партнера","_type":"localeString"},"deal-protection":{"ru":"Защита сделки","_type":"localeString","en":"Deal protection"},"average-deal":{"ru":"Средний размер сделки","_type":"localeString","en":"Average deal size"},"average-time":{"en":"Average deal closing time","ru":"Средний срок закрытия сделки","_type":"localeString"},"login":{"_type":"localeString","en":"Login","ru":"Войти"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"to-know-more":{"en":"To know more","ru":"Чтобы узнать больше","_type":"localeString"},"scheme":{"_type":"localeString","en":" Scheme of work","ru":"Схема работы"},"competitive-products":{"ru":"Конкурентные продукты","_type":"localeString","en":" Competitive products"},"implementations-with-product":{"ru":"Внедрения с этим продуктом","_type":"localeString","en":"Deployments with this product"},"user-features":{"ru":"Особенности пользователей","_type":"localeString","en":"User features"},"job-roles":{"ru":"Роли заинтересованных сотрудников","_type":"localeString","en":" Roles of Interested Employees"},"organizational-features":{"ru":"Организационные особенности","_type":"localeString","en":"Organizational Features"},"calculate-price":{"ru":"Рассчитать цену продукта","_type":"localeString","en":" Calculate product price"},"selling-stories":{"ru":"Продающие истории","_type":"localeString","en":" Selling stories"},"materials":{"en":"Materials","ru":"Материалы","_type":"localeString"},"about-product":{"ru":"О продукте","_type":"localeString","en":"About Product"},"or":{"ru":"или","_type":"localeString","en":"or"},"program-sends-data":{"en":"Program Sends Data","_type":"localeString"},"calculate-roi":{"ru":"Рассчитать ROI продукта","_type":"localeString","en":"Calculate Product ROI"},"complementary-categories":{"en":"Complementary Categories","ru":"Схожие категории","_type":"localeString"},"program-receives-data":{"_type":"localeString","en":"Program Receives Data"},"rebate":{"_type":"localeString","en":"Bonus","ru":"Бонус"},"rebate-for-poc":{"ru":"Бонус 4 POC","_type":"localeString","en":"Bonus 4 POC"},"configurator-content":{"_type":"localeString","en":"Calculate price for this product here","ru":"Рассчитайте стоимость продукта"},"configurator-link":{"ru":"тут","_type":"localeString","en":"here"},"vendor-popover":{"_type":"localeString","en":"vendor","ru":"производитель"},"user-popover":{"ru":"пользователь","_type":"localeString","en":"user"},"select-for-presentation":{"en":"select product for presentation","ru":"выбрать продукт для презентации","_type":"localeString"},"auth-message":{"_type":"localeString","en":"You have to register or login.","ru":"Вам нужно зарегистрироваться или войти."},"add-to-comparison":{"en":"Add to comparison","ru":"Добавить в сравнение","_type":"localeString"},"added-to-comparison":{"ru":"Добавлено в сравнения","_type":"localeString","en":"Added to comparison"},"roi-calculator-content":{"ru":"Рассчитайте ROI для данного продукта","_type":"localeString","en":"Calculate ROI for this product here"},"not-yet-converted":{"en":"Data is moderated and will be published soon. Please, try again later.","ru":"Данные модерируются и вскоре будут опубликованы. Попробуйте повторить переход через некоторое время.","_type":"localeString"},"videos":{"ru":"Видео","_type":"localeString","en":"Videos"},"vendor-verified":{"_type":"localeString","en":"Vendor verified","ru":"Подтверждено производителем"},"event-schedule":{"ru":"Расписание событий","_type":"localeString","en":"Events schedule"},"scheduling-tip":{"en":"Please, сhoose a convenient date and time and register for the event.","ru":"Выберите удобную дату и время и зарегистрируйтесь на ивент.","_type":"localeString"},"register-to-schedule":{"ru":"Для того чтобы зарегистрироваться на ивент пожалуйста авторизируйтесь или зарегистрируйтесь на сайт.","_type":"localeString","en":"To register for the event please log in or register on the site."},"comparison-matrix":{"_type":"localeString","en":"Comparison matrix","ru":"Матрица сравнений"},"compare-with-competitive":{"ru":"Сравнить с конкурентными","_type":"localeString","en":" Compare with competitive"},"avg-deal-closing-unit":{"en":"months","ru":"месяцев","_type":"localeString"},"under-construction":{"ru":"Данная услуга всё ещё находится в разработке.","_type":"localeString","en":"Current feature is still developing to become even more useful for you."},"product-presentation":{"_type":"localeString","en":"Product presentation","ru":"Презентация продукта"},"go-to-comparison-table":{"ru":"Перейти к таблице сравнения","_type":"localeString","en":" Go to comparison table"},"see-product-details":{"_type":"localeString","en":"See Details","ru":"Детали"}},"header":{"help":{"de":"Hilfe","ru":"Помощь","_type":"localeString","en":"Help"},"how":{"de":"Wie funktioniert es","ru":"Как это работает","_type":"localeString","en":"How does it works"},"login":{"ru":"Вход","_type":"localeString","en":"Log in","de":"Einloggen"},"logout":{"_type":"localeString","en":"Sign out","ru":"Выйти"},"faq":{"de":"FAQ","ru":"FAQ","_type":"localeString","en":"FAQ"},"references":{"_type":"localeString","en":"Requests","de":"References","ru":"Мои запросы"},"solutions":{"_type":"localeString","en":"Solutions","ru":"Возможности"},"find-it-product":{"_type":"localeString","en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта"},"autoconfigurator":{"_type":"localeString","en":" Price calculator","ru":"Калькулятор цены"},"comparison-matrix":{"en":"Comparison Matrix","ru":"Матрица сравнения","_type":"localeString"},"roi-calculators":{"en":"ROI calculators","ru":"ROI калькуляторы","_type":"localeString"},"b4r":{"en":"Bonus for reference","ru":"Бонус за референс","_type":"localeString"},"business-booster":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"catalogs":{"en":"Catalogs","ru":"Каталоги","_type":"localeString"},"products":{"en":"Products","ru":"Продукты","_type":"localeString"},"implementations":{"_type":"localeString","en":"Deployments","ru":"Внедрения"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"categories":{"_type":"localeString","en":"Categories","ru":"Категории"},"for-suppliers":{"_type":"localeString","en":"For suppliers","ru":"Поставщикам"},"blog":{"ru":"Блог","_type":"localeString","en":"Blog"},"agreements":{"ru":"Сделки","_type":"localeString","en":"Deals"},"my-account":{"ru":"Мой кабинет","_type":"localeString","en":"My account"},"register":{"en":"Register","ru":"Зарегистрироваться","_type":"localeString"},"comparison-deletion":{"ru":"Удаление","_type":"localeString","en":"Deletion"},"comparison-confirm":{"ru":"Подтвердите удаление","_type":"localeString","en":"Are you sure you want to delete"},"search-placeholder":{"_type":"localeString","en":"Enter your search term","ru":"Введите поисковый запрос"},"my-profile":{"_type":"localeString","en":"My profile","ru":"Мои данные"},"about":{"_type":"localeString","en":"About Us"},"it_catalogs":{"_type":"localeString","en":"IT catalogs"},"roi4presenter":{"_type":"localeString","en":"Roi4Presenter"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"sub_it_catalogs":{"_type":"localeString","en":"Find IT product"},"sub_b4reference":{"_type":"localeString","en":"Get reference from user"},"sub_roi4presenter":{"_type":"localeString","en":"Make online presentations"},"sub_roi4webinar":{"_type":"localeString","en":"Create an avatar for the event"},"catalogs_new":{"_type":"localeString","en":"Products"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"},"it_our_it_catalogs":{"_type":"localeString","en":"Our IT Catalogs"},"it_products":{"_type":"localeString","en":"Find and compare IT products"},"it_implementations":{"_type":"localeString","en":"Learn implementation reviews"},"it_companies":{"en":"Find vendor and company-supplier","_type":"localeString"},"it_categories":{"_type":"localeString","en":"Explore IT products by category"},"it_our_products":{"_type":"localeString","en":"Our Products"},"it_it_catalogs":{"_type":"localeString","en":"IT catalogs"}},"footer":{"copyright":{"en":"All rights reserved","de":"Alle rechte vorbehalten","ru":"Все права защищены","_type":"localeString"},"company":{"_type":"localeString","en":"My Company","de":"Über die Firma","ru":"О компании"},"about":{"de":"Über uns","ru":"О нас","_type":"localeString","en":"About us"},"infocenter":{"de":"Infocenter","ru":"Инфоцентр","_type":"localeString","en":"Infocenter"},"tariffs":{"en":"Subscriptions","de":"Tarife","ru":"Тарифы","_type":"localeString"},"contact":{"ru":"Связаться с нами","_type":"localeString","en":"Contact us","de":"Kontaktiere uns"},"marketplace":{"_type":"localeString","en":"Marketplace","de":"Marketplace","ru":"Marketplace"},"products":{"en":"Products","de":"Produkte","ru":"Продукты","_type":"localeString"},"compare":{"de":"Wähle und vergleiche","ru":"Подобрать и сравнить","_type":"localeString","en":"Pick and compare"},"calculate":{"en":"Calculate the cost","de":"Kosten berechnen","ru":"Расчитать стоимость","_type":"localeString"},"get_bonus":{"_type":"localeString","en":"Bonus for reference","de":"Holen Sie sich einen Rabatt","ru":"Бонус за референс"},"salestools":{"de":"Salestools","ru":"Salestools","_type":"localeString","en":"Salestools"},"automatization":{"de":"Abwicklungsautomatisierung","ru":"Автоматизация расчетов","_type":"localeString","en":"Settlement Automation"},"roi_calcs":{"ru":"ROI калькуляторы","_type":"localeString","en":"ROI calculators","de":"ROI-Rechner"},"matrix":{"de":"Vergleichsmatrix","ru":"Матрица сравнения","_type":"localeString","en":"Comparison matrix"},"b4r":{"de":"Rebate 4 Reference","ru":"Rebate 4 Reference","_type":"localeString","en":"Rebate 4 Reference"},"our_social":{"ru":"Наши социальные сети","_type":"localeString","en":"Our social networks","de":"Unsere sozialen Netzwerke"},"subscribe":{"de":"Melden Sie sich für den Newsletter an","ru":"Подпишитесь на рассылку","_type":"localeString","en":"Subscribe to newsletter"},"subscribe_info":{"en":"and be the first to know about promotions, new features and recent software reviews","ru":"и узнавайте первыми об акциях, новых возможностях и свежих обзорах софта","_type":"localeString"},"policy":{"ru":"Политика конфиденциальности","_type":"localeString","en":"Privacy Policy"},"user_agreement":{"ru":"Пользовательское соглашение ","_type":"localeString","en":"Agreement"},"solutions":{"ru":"Возможности","_type":"localeString","en":"Solutions"},"find":{"en":"Selection and comparison of IT product","ru":"Подбор и сравнение ИТ продукта","_type":"localeString"},"quote":{"ru":"Калькулятор цены","_type":"localeString","en":"Price calculator"},"boosting":{"en":"Business boosting","ru":"Развитие бизнеса","_type":"localeString"},"4vendors":{"ru":"поставщикам","_type":"localeString","en":"4 vendors"},"blog":{"_type":"localeString","en":"blog","ru":"блог"},"pay4content":{"en":"we pay for content","ru":"платим за контент","_type":"localeString"},"categories":{"ru":"категории","_type":"localeString","en":"categories"},"showForm":{"en":"Show form","ru":"Показать форму","_type":"localeString"},"subscribe__title":{"en":"We send a digest of actual news from the IT world once in a month!","ru":"Раз в месяц мы отправляем дайджест актуальных новостей ИТ мира!","_type":"localeString"},"subscribe__email-label":{"ru":"Email","_type":"localeString","en":"Email"},"subscribe__name-label":{"ru":"Имя","_type":"localeString","en":"Name"},"subscribe__required-message":{"_type":"localeString","en":"This field is required","ru":"Это поле обязательное"},"subscribe__notify-label":{"en":"Yes, please, notify me about news, events and propositions","ru":"Да, пожалуйста уведомляйте меня о новостях, событиях и предложениях","_type":"localeString"},"subscribe__agree-label":{"en":"By subscribing to the newsletter, you agree to the %TERMS% and %POLICY% and agree to the use of cookies and the transfer of your personal data","ru":"Подписываясь на рассылку, вы соглашаетесь с %TERMS% и %POLICY% и даете согласие на использование файлов cookie и передачу своих персональных данных*","_type":"localeString"},"subscribe__submit-label":{"ru":"Подписаться","_type":"localeString","en":"Subscribe"},"subscribe__email-message":{"ru":"Пожалуйста, введите корректный адрес электронной почты","_type":"localeString","en":"Please, enter the valid email"},"subscribe__email-placeholder":{"ru":"username@gmail.com","_type":"localeString","en":"username@gmail.com"},"subscribe__name-placeholder":{"ru":"Имя Фамилия","_type":"localeString","en":"Last, first name"},"subscribe__success":{"ru":"Вы успешно подписаны на рассылку. Проверьте свой почтовый ящик.","_type":"localeString","en":"You are successfully subscribed! Check you mailbox."},"subscribe__error":{"ru":"Не удалось оформить подписку. Пожалуйста, попробуйте позднее.","_type":"localeString","en":"Subscription is unsuccessful. Please, try again later."},"roi4presenter":{"ru":"roi4presenter","_type":"localeString","en":"Roi4Presenter","de":"roi4presenter"},"it_catalogs":{"en":"IT catalogs","_type":"localeString"},"roi4webinar":{"_type":"localeString","en":"Pitch Avatar"},"b4reference":{"_type":"localeString","en":"Bonus4Reference"}},"breadcrumbs":{"home":{"_type":"localeString","en":"Home","ru":"Главная"},"companies":{"ru":"Компании","_type":"localeString","en":"Companies"},"products":{"_type":"localeString","en":"Products","ru":"Продукты"},"implementations":{"ru":"Внедрения","_type":"localeString","en":"Deployments"},"login":{"_type":"localeString","en":"Login","ru":"Вход"},"registration":{"_type":"localeString","en":"Registration","ru":"Регистрация"},"b2b-platform":{"ru":"Портал для покупателей, поставщиков и производителей ИТ","_type":"localeString","en":"B2B platform for IT buyers, vendors and suppliers"}},"comment-form":{"title":{"ru":"Оставить комментарий","_type":"localeString","en":"Leave comment"},"firstname":{"en":"First name","ru":"Имя","_type":"localeString"},"lastname":{"ru":"Фамилия","_type":"localeString","en":"Last name"},"company":{"ru":"Компания","_type":"localeString","en":"Company name"},"position":{"en":"Position","ru":"Должность","_type":"localeString"},"actual-cost":{"_type":"localeString","en":"Actual cost","ru":"Фактическая стоимость"},"received-roi":{"ru":"Полученный ROI","_type":"localeString","en":"Received ROI"},"saving-type":{"ru":"Тип экономии","_type":"localeString","en":"Saving type"},"comment":{"en":"Comment","ru":"Комментарий","_type":"localeString"},"your-rate":{"ru":"Ваша оценка","_type":"localeString","en":"Your rate"},"i-agree":{"en":"I agree","ru":"Я согласен","_type":"localeString"},"terms-of-use":{"ru":"С пользовательским соглашением и политикой конфиденциальности","_type":"localeString","en":"With user agreement and privacy policy"},"send":{"ru":"Отправить","_type":"localeString","en":"Send"},"required-message":{"ru":"{NAME} - это обязательное поле","_type":"localeString","en":"{NAME} is required filed"}},"maintenance":{"title":{"en":"Site under maintenance","ru":"На сайте проводятся технические работы","_type":"localeString"},"message":{"ru":"Спасибо за ваше понимание","_type":"localeString","en":"Thank you for your understanding"}}},"translationsStatus":{"product":"success"},"sections":{},"sectionsStatus":{},"pageMetaData":{"product":{"meta":[{"name":"og:type","content":"website"},{"name":"og:image","content":"https://roi4cio.com/fileadmin/templates/roi4cio/image/roi4cio-logobig.jpg"}],"translatable_meta":[{"name":"og:title","translations":{"ru":"Конкретный продукт","_type":"localeString","en":"Example product"}},{"translations":{"ru":"Описание для конкретного продукта","_type":"localeString","en":"Description for one product"},"name":"og:description"},{"name":"title","translations":{"_type":"localeString","en":"Product","ru":"Продукт"}},{"name":"description","translations":{"en":"Product description","ru":"Описание продукта","_type":"localeString"}},{"translations":{"_type":"localeString","en":"Product keywords","ru":"Ключевые слова продукта"},"name":"keywords"}],"title":{"_type":"localeString","en":"ROI4CIO: Product","ru":"ROI4CIO: Продукт"}}},"pageMetaDataStatus":{"product":"success"},"subscribeInProgress":false,"subscribeError":false},"auth":{"inProgress":false,"error":false,"checked":true,"initialized":false,"user":{},"role":null,"expires":null},"products":{"productsByAlias":{"vado-one-way-data-diode":{"id":3368,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/VADO450.jpg","logo":true,"schemeURL":"https://old.roi4cio.com/fileadmin/user_upload/scheme_vado.png","scheme":true,"title":"VADO One Way Data Diode","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"vado-one-way-data-diode","companyTitle":"VADO Security Technologies","companyTypes":["supplier","vendor"],"companyId":5250,"companyAlias":"vado-security-technologies","description":"<span style=\"color: rgb(97, 97, 97); \">VADO Security develops and markets Network Data Diodes for national governments, Gas & Oil Industries, Banking and more, guarding against cyber attacks.<br /></span>\r\n<span style=\"color: rgb(97, 97, 97); \">Vado is a manufacturer of data diode systems. The Vado diode is composed of hardware & software (called "agents"). The hardware diode is composed of a TX hardware unit and an RX hardware unit. The units are connected to servers on each side via ethernet cables and connected to each other (TX to RX) via a single fiber optic cable.</span>\r\n<span style=\"color: rgb(97, 97, 97); \">The VADO One Way Data Diode appliance is designed to allow unidirectional data transfer to networks that must be physically detached for security reasons, such as R&D and production systems in the defense industry.</span>\r\n\r\n\r\n<span style=\"font-weight: bold;\">The main features of VADO One Way Data Diode:</span>\r\n<ul><li>Proven Technology</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">100% hack proof Technology for all 100 Mb & 1G systems\r\n<ul><li>Log Management</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">System Action Logs & File transfer logs.<br />Sent via Email, Syslog or File\r\n<ul><li>User Interface</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Central & Intuitive User Interface \r\n<ul><li>Data Transfer Reliability</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Reliability of Data transfer with unique ERD system\r\n<ul><li>Virtual Machine Support</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">OS Virtual Machine Support for all Software Agents (No Change at Hardware Level)\r\n<ul><li>Windows OS Support</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Works with all Windows OS (32,64), Server or PC & VM (Patent Pending)\r\n<ul><li>High Availability</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">High Availability for all Data Diode Agents & Hardware\r\n<ul><li>Pre & Post Send Scripts Option</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Ability to Activate Scripts on Files Pre/Post Send/Receive Per Channel\r\n<ul><li>Multi-Agents</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Ability to use Multi-Agents on One Server <br />With One Hardware System\r\n<ul><li>No File Size Limits</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Transfer any File Size or Type\r\n<ul><li>XML Filtering</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Built in XML Schema Filtering\r\n<ul><li>Files Filter</li></ul>\r\n<div class=\"indent\"><div class=\"indent\">Filter Files by Type or Size","shortDescription":"The VADO One Way Data Diode appliance is designed to allow unidirectional data transfer to networks","type":"Software","isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"VADO One Way Data Diode","keywords":"","description":"<span style=\"color: rgb(97, 97, 97); \">VADO Security develops and markets Network Data Diodes for national governments, Gas & Oil Industries, Banking and more, guarding against cyber attacks.<br /></span>\r\n<span style=\"color: rgb(97, 97, 97); \">Vado is a m","og:title":"VADO One Way Data Diode","og:description":"<span style=\"color: rgb(97, 97, 97); \">VADO Security develops and markets Network Data Diodes for national governments, Gas & Oil Industries, Banking and more, guarding against cyber attacks.<br /></span>\r\n<span style=\"color: rgb(97, 97, 97); \">Vado is a m","og:image":"https://old.roi4cio.com/fileadmin/user_upload/VADO450.jpg"},"eventUrl":"","translationId":3369,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":548,"title":"Web security - Appliance","alias":"web-security-appliance","description":"A security appliance is any form of server appliance that is designed to protect computer networks from unwanted traffic. Types of network security appliance:\r\n<span style=\"font-weight: bold;\">Active devices</span> block unwanted traffic. Examples of such devices are firewalls, anti-virus scanning devices, and content filtering devices. For instance, if you want to make sure that you do not get pointless spam and other unnecessary issues, installing an active device might be a great idea. Active devices include anti-virus scanning devices, which will automatically scan throughout the network to ensure that no virus exists within the protected network. Then, there are web filtering appliances as well as firewalls, the purpose of both of which is to ensure that only useful content and traffic flows through the network and all pointless or harmful data is filtered.\r\n<span style=\"font-weight: bold;\">Passive devices detect and report on unwanted traffic.</span> A common example is intrusion detection appliances, which are installed in order to determine whether the network has been compromised in any way. These devices usually work in the background at all times.\r\n<span style=\"font-weight: bold;\">Preventative devices</span> scan networks and identify potential security problems (such as penetration testing and vulnerability assessment appliances). These devices are usually designed to 'prevent' damage to the network by identifying problems in advance. Common examples include devices that employ penetration testing as well as those devices which carry out vulnerability assessment on networks.\r\n<span style=\"font-weight: bold;\">Unified Threat Management (UTM)</span> combines features together into one system, such as some firewalls, content filtering, web caching etc. UTM devices are designed to provide users with a one-stop solution to all of their network needs and internet security appliances. As the name clearly suggests, these devices provide the features of all of the other network devices and condense them into one. These devices are designed to provide a number of different network security options in one package, hence providing networks with a simple solution. Rather than installing four different devices, users can easily install one and be done with it. The market of UTM devices has exceeded the billion dollar mark already, which just goes to show how popular these devices have become amongst network users.\r\nOne of the most popular and accessible types of web security appliance tools is the hardware <span style=\"font-weight: bold;\">keylogger.</span> This device is placed covertly between the case and keyboard with an output for the computer case and input for the keyboard. As hardware standards have changed over time, a USB hardware keylogger provides access on many devices.\r\nThe <span style=\"font-weight: bold;\">web proxy appliance</span> is basically hardware you use to manage user web access. More to the point, it's the type of device that handles the blocking or controlling of suspicious programs. It's typically placed in between network users and the worldwide web; ergo, it's most popular application is serving as a central control hub over employee Internet use by corporations and enterprises. It's the in-between gateway that serves as a termination point of sorts for online communications within a network and is capable of applying a multitude of rule-based limitations on Internet traffic, web content, and requests before they even end up with end users.\r\nAnother commonly used hardware tool is the <span style=\"font-weight: bold;\">wireless antenna.</span> These can be used to surveil a wide variety of wireless communications, including local cellular and internet service networks. More mechanical and general devices may include lockpicks or portable probes and hijack chips for compromising electronic devices through the physical circuit.\r\n<span style=\"font-weight: bold;\">Secure web gateway appliances</span> are solutions to prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution. Software and cloud-based platforms now perform this function as well.","materialsDescription":"<h1 class=\"align-center\"> What are the top Network Security Appliance brands?</h1>\r\n<span style=\"font-weight: bold;\">Blue Coat Systems,</span> Sunnyvale, Calif.-based Blue Coat has been part of security powerhouse Symantec since 2016.\r\n<span style=\"font-weight: bold;\">F5 Networks,</span> the Seattle-based network application delivery vendor, sold about $17.6 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">SonicWall.</span>Firewall power player SonicWall sold about $23.5 million in network security appliances through the channel in the second quarter, according to NPD.\r\n<span style=\"font-weight: bold;\">Fortinet,</span> Sunnyvale, Calif., security software vendor Fortinet sold about $24.4 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">Cisco Systems,</span> Cisco Systems was the quarter's growth champion, posting $77.2 million in network security appliance sales through the channel in the period, beating the previous year’s quarterly total of $62.3 million by about 24 percent, according to NPD.\r\n<span style=\"font-weight: bold;\">Palo Alto Networks.</span> With $94.2 million in network security appliance sales in the quarter, Palo Alto Networks was the best-selling network security appliance brand of the second quarter, according to NPD.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_security_Appliance.png"},{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[{"id":5122,"logo":false,"scheme":false,"title":"BKC — FloodMonitoring","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"bkc-floodmonitoring","companyTitle":"BANCOMZVJAZOK","companyTypes":["supplier","vendor"],"companyId":7969,"companyAlias":"bankomsvjaz","description":" BKC - FloodMonitoring разработана специалистами Департамента систем технологического мониторинга для предсказания наводнения и своевременного реагирования. Данная сеть направляет информацию с постов в аналитическую систему прогнозирования наводнения.\r\nBKC - FloodMonitoring способна:\r\n<ul><li>Заблаговременно выявлять атмосферные фронты, которые могут сформировать наводнение.</li></ul>\r\n<ul><li>Прогнозировать количество осадков и уровня воды в реках.</li></ul>\r\n<ul><li>Оценивать и анализировать риски наводнения.</li></ul>\r\n<ul><li>Быстро рассчитывать зоны затопления и глубины по данным прогноза гидрометеорологической ситуации.</li></ul>\r\n<ul><li>Получать данные спутникового метеорологического мониторинга.</li></ul>\r\n<ul><li>Моделировать сценарии подтопления и оценивать эффективность гидрологического защиты.</li></ul>\r\n<ul><li>Отслеживать уровень воды в реках и количество осадков на прилегающих территориях.</li></ul>","shortDescription":"BKC — FloodMonitoring: комплексная система прогнозирования паводков для непрерывного сбора и передачи данных с гидрологических постов водоемов и их анализа.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"BKC — FloodMonitoring","keywords":"","description":" BKC - FloodMonitoring разработана специалистами Департамента систем технологического мониторинга для предсказания наводнения и своевременного реагирования. Данная сеть направляет информацию с постов в аналитическую систему прогнозирования наводнения.\r\nBKC - F","og:title":"BKC — FloodMonitoring","og:description":" BKC - FloodMonitoring разработана специалистами Департамента систем технологического мониторинга для предсказания наводнения и своевременного реагирования. Данная сеть направляет информацию с постов в аналитическую систему прогнозирования наводнения.\r\nBKC - F"},"eventUrl":"","translationId":7341,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":5123,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Mobilnyi_terminal_VRT800.PNG","logo":true,"scheme":false,"title":"Мобильный терминал ВРТ800","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"mobilnyi-terminal-vrt800","companyTitle":"BANCOMZVJAZOK","companyTypes":["supplier","vendor"],"companyId":7969,"companyAlias":"bankomsvjaz","description":" Мобильный терминал К.BPT800 — мобильное решение для регистрации и контроля лиц, пересекающих контрольно-пропускные пункты. Обеспечивает качественную и быструю фиксацию биометрических данных.<br /><br /><span style=\"font-weight: bold;\">Функции</span><br />\r\n<ul><li>Автоматическое считывание с машиносчитываемой зоны (MRZ) и чипов электронных документов (RFID)</li></ul>\r\n<ul><li>Распознавание текстовых и биометрических данных (ICAO Document 9303)</li></ul>\r\n<ul><li>Сканирование отпечатков пальцев (FBI)</li></ul>\r\n<ul><li>Проверка соответствия и достоверности документов по базам данных</li></ul>\r\n<ul><li>Поддержка возможности ввода данных вручную</li></ul>\r\n<ul><li>Опредедение и фиксация координат GPS</li></ul>\r\n<ul><li>Время непрерывной работы - 8 часов</li></ul>\r\n<ul><li>Передача данных посредством GSM, GPRS, Wi-Fi</li></ul>\r\n<ul><li>Голосовые вызовы через GSM сеть</li></ul>\r\n<br /><span style=\"font-weight: bold;\">ОБЛАСТИ ПРИМЕНЕНИЯ</span>\r\nПограничный контроль в пунктах пропуска для:\r\n<ul><li>Воздушного</li></ul>\r\n<ul><li>Морского, речного</li></ul>\r\n<ul><li>Железнодорожного</li></ul>\r\n<ul><li>Автомобильного</li></ul>\r\n<ul><li>Пешеходного сообщения</li></ul>\r\nПравоохранительные органы<br />Банки<br />Отели<br />Медицинские учреждения<br />Государственные учреждения","shortDescription":"Мобильный терминал ВРТ800 предназначен для автоматизации регистрации и контроля лиц, которые пересекают контрольно-пропускные пункты. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":5,"sellingCount":11,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Мобильный терминал ВРТ800","keywords":"","description":" Мобильный терминал К.BPT800 — мобильное решение для регистрации и контроля лиц, пересекающих контрольно-пропускные пункты. Обеспечивает качественную и быструю фиксацию биометрических данных.<br /><br /><span style=\"font-weight: bold;\">Функции</span><br />\r\n<u","og:title":"Мобильный терминал ВРТ800","og:description":" Мобильный терминал К.BPT800 — мобильное решение для регистрации и контроля лиц, пересекающих контрольно-пропускные пункты. Обеспечивает качественную и быструю фиксацию биометрических данных.<br /><br /><span style=\"font-weight: bold;\">Функции</span><br />\r\n<u","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Mobilnyi_terminal_VRT800.PNG"},"eventUrl":"","translationId":7342,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":44,"title":"IAM - Identity and Access Management","alias":"iam-identity-and-access-management","description":"<span style=\"font-weight: bold; \">Identity management</span> (IdM), also known as <span style=\"font-weight: bold; \">identity and access management</span> (IAM or IdAM), is a framework of policies and technologies for ensuring that the proper people in an enterprise have the appropriate access to technology resources. IdM systems fall under the overarching umbrellas of IT security and Data Management.\r\nWith an IAM framework in place, information technology (IT) managers can control user access to critical information within their organizations. Identity and access management software offers role-based access control, which lets system administrators regulate access to systems or networks based on the roles of individual users within the enterprise. In this context, access is the ability of an individual user to perform a specific task, such as view, create or modify a file. Roles are defined according to job competency, authority and responsibility within the enterprise.\r\nSystems used for identity and access management include single sign-on systems, multi-factor authentication and privileged access management (PAM). These technologies also provide the ability to securely store identity and profile data as well as data governance functions to ensure that only data that is necessary and relevant is shared. IAM systems can be deployed on premises, provided by a third-party vendor through a cloud-based subscription model or deployed in a hybrid cloud.\r\n<span style=\"font-weight: bold; \">Basic components of IAM.</span> On a fundamental level, IAM encompasses the following components:\r\n<ul><li>How individuals are identified in a system.</li><li>How roles are identified in a system and how they are assigned to individuals.</li><li>Adding, removing and updating individuals and their roles in a system.</li><li>Assigning levels of access to individuals or groups of individuals.</li><li>Protecting the sensitive data within the system and securing the system itself.</li></ul>\r\nAccess identity management system should consist of all the necessary controls and tools to capture and record user login information, manage the enterprise database of user identities and orchestrate the assignment and removal of access privileges. That means that systems used for IAM should provide a centralized directory service with oversight as well as visibility into all aspects of the company user base.\r\nTechnologies for identity access and management should simplify the user provisioning and account setup process. User access management software should reduce the time it takes to complete these processes with a controlled workflow that decreases errors as well as the potential for abuse while allowing automated account fulfillment. An identity and access management system should also allow administrators to instantly view and change access rights.\r\nIAM systems should be used to provide flexibility to establish groups with specific privileges for specific roles so that access rights based on employee job functions can be uniformly assigned. Identity access management software should also provide request and approval processes for modifying privileges because employees with the same title and job location may need customized, or slightly different, access.\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: bold; \">What is the difference between identity and access management?</span></h1>\r\nAfter authentication, there needs to be an access control decision. The decision is based on the information available about the user. The difference between identity management and access management is thus:\r\n<ul><li>Identity Management is about managing the attributes related to the user.</li><li>Access Management is about evaluating the attributes based on policies and making Yes/No decisions.</li></ul>\r\nThere are three types of Access Control Systems: \r\n<ul><li>Discretionary Access Control (DAC)</li><li>Mandatory Access Control (MAC)</li><li>Role-Based Access Control (RBAC)</li></ul>\r\n<h1 class=\"align-center\">What are the main benefits of identity management?</h1>\r\nIdentity access and management are useful in many ways: it ensures regulatory compliance, enables cost savings, and simplifies the lives of your customers by enhancing their experience. These are the main benefits of having an IAM solution:\r\n<ul><li><span style=\"font-weight: bold; \">Easily accessible anywhere</span></li></ul>\r\nNowadays, people need their identities all the time to use services and resources. In that sense, they require access to any platform without limits using their IDs, thus eliminating barriers for customers to enter the platform anytime, anywhere.\r\n<ul><li><span style=\"font-weight: bold; \">It encourages the connection between the different parts</span></li></ul>\r\nThe digital transformation that is taking place among more and more organizations forces the need for people, applications and devices to stay connected to each other. And, as expected, all of these processes bring with them some security threats.\r\nHowever, IAM software is a solution that guarantees correct administration with the best identity providers, such as Salesforce, Twitter and Google. Authentication and security are two of the strengths of Identity and Access Management, as well as being extendable and ready for future advances. \r\n<ul><li><span style=\"font-weight: bold; \">It improves productivity</span></li></ul>\r\nIdentity software automates the entry of new personnel and facilitates access to all components of the system with which the company operates. This allows reducing times in the delivery of access so that they begin to produce immediately. For this reason, business agility is also increased by using the advantages that technology makes available to meet the demands of today’s world. \r\n<ul><li><span style=\"font-weight: bold; \">It optimizes user experience</span></li></ul>\r\nRemembering so many usernames and passwords to access social networks, banks and other services on the Internet becomes a challenge for people. Thanks to user identity management system, people can get an identity that provides access to different systems. Single sign-on (SSO) allows customers and partners to access different internal and external applications with the same access method. That way the user experience will not be affected.\r\n<ul><li><span style=\"font-weight: bold; \">Secure your brand at all levels</span></li></ul>\r\nThere will be no risk of security breach, regardless of whether a connection is made from multiple identity providers. Identity management software and access management software enables strong authentication to keep your business and brand secure. Detailed verification of all identities entering the system is performed, in addition to allowing various licenses to limit access levels. At the same time, it monitors through analysis, fraud detection and alert functions that indicate a possible real risk. In short, enterprise identity management system is a reliable tool that employs technology to support digital transformation. A software that provides agility, security and satisfaction to the company’s customers. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_IAM.png"},{"id":47,"title":"Access Control Systems","alias":"access-control-systems","description":"Access control is a security technique that regulates who or what can view or use resources in a computing environment. It is a fundamental concept in security that minimizes risk to the business or organization.\r\nThere are two types of access control: physical and logical. Physical access control limits access to campuses, buildings, rooms and physical IT assets. Logical access control limits connections to computer networks, system files and data.\r\nTo secure a facility, organizations use electronic access control systems that rely on user credentials, access card readers, auditing and reports to track employee access to restricted business locations and proprietary areas, such as data centers. Some of these systems incorporate access control panels to restrict entry to rooms and buildings as well as alarms and lockdown capabilities to prevent unauthorized access or operations.\r\nAccess control systems perform identification authentication and authorization of users and entities by evaluating required login credentials that can include passwords, personal identification numbers (PINs), biometric scans, security tokens or other authentication factors. Multifactor authentication, which requires two or more authentication factors, is often an important part of layered defense to protect access control systems.\r\nThese security controls work by identifying an individual or entity, verifying that the person or application is who or what it claims to be, and authorizing the access level and set of actions associated with the username or IP address. Directory services and protocols, including the Local Directory Access Protocol (LDAP) and the Security Assertion Markup Language (SAML), provide access controls for authenticating and authorizing users and entities and enabling them to connect to computer resources, such as distributed applications and web servers.\r\nOrganizations use different access control models depending on their compliance requirements and the security levels of information technology they are trying to protect.\r\nThe goal of access control is to minimize the risk of unauthorized access to physical and logical systems. Access control is a fundamental component of security compliance programs that ensures security technology and access control policies are in place to protect confidential information, such as customer data. Most organizations have infrastructure and procedures that limit access to networks, computer systems, applications, files and sensitive data, such as personally identifiable information and intellectual property.\r\nAccess control systems are complex and can be challenging to manage in dynamic IT environments that involve on-premises systems and cloud services. After some high-profile breaches, technology vendors have shifted away from single sign-on systems to unified access management, which offers access controls for on-premises and cloud environments.\r\nAccess control is a process that is integrated into an organization's IT environment. It can involve identity and access management systems. These systems provide access control software, a user database, and management tools for access control policies, auditing and enforcement.\r\nWhen a user is added to an access management system, system administrators use an automated provisioning system to set up permissions based on access control frameworks, job responsibilities and workflows.\r\nThe best practice of "least privilege" restricts access to only resources that an employee requires to perform their immediate job functions.\r\nA common security issue is failure to revoke credentials and access to systems and data when an individual moves into a different job internally or leaves the company.","materialsDescription":"<span style=\"font-weight: bold;\">What is an ACS?</span>\r\nInterpretation of the abbreviation "ACS" - access control system. Includes hardware and software.\r\n<span style=\"font-weight: bold;\">How does ACS work?</span>\r\nThe system allows only people and cars that it “recognizes” into the territory to be able to identify.\r\nFor access we use contact and contactless keys, cards, fingerprints, secret code. Doorphones unlock the locks manually - when you click the "Open" button.\r\nThe intellectual access control system generates daily reports for each employee. Upon arrival at work, the staff opens the door with personal cards or puts the cards to the reader at the reception. We fix the time of breaks and the end of the working day.\r\n<span style=\"font-weight: bold;\">What are the types of access control?</span>\r\nAccess control systems are divided into autonomous and networked:\r\n<span style=\"font-style: italic;\">Autonomous access control systems</span> are not connected to the computer. Suitable for small offices, cafes, shops, hotels. Autonomous systems are used on sites with 1–2 inputs.\r\n<span style=\"font-style: italic;\">Network access control systems</span> are connected to a computer. Such systems serve complex objects: business centers, manufacturing, research institutes, hospitals, etc.\r\n<span style=\"font-weight: bold;\">What is the access control system?</span>\r\nMain components:\r\n1. Blocking devices. Electromagnetic and electromechanical locks, barriers, gates, etc.\r\n2. Identifiers:\r\n<ul><li>Touch Memory contact keys - standard intercom keys;</li><li>Touch Memory Access Keys;</li><li>RFID contactless keys;</li><li>Biometric sensor - fingerprint access;</li><li>Keyboard for entering code.</li></ul>\r\n3. Readers. Card readers, scanners, etc.\r\n4. Controllers. Unlock the blocking device automatically or manually. Manual input is used in intercoms.\r\n<span style=\"font-weight: bold;\">Is it possible to combine an access control system with a security alarm?</span>\r\nThe unified access control system + security alarm system responds to an attempt to illegally pass through the access control point: open the door, unlock the turnstile. The alarm signal instantly arrives on the control panel of the security company, mobile phone manager or another responsible person.\r\n<span style=\"font-weight: bold;\">Why combine access control with video surveillance?</span>\r\nWhen integrating with video surveillance, you get video recordings of all passes through access control points. Information from the cameras is transmitted to the monitors of the security in real time - the situation at the facility is easy to control.\r\n<span style=\"font-weight: bold;\">Why do you need ACS maintenance?</span>\r\nMaintenance prolongs the life of the system. The equipment is inspected once a month, if necessary, fix minor problems and replace components. You save on capital repairs at the expense of preventive.<br /> ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Access_Control_Systems.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":560,"title":"IPC - Information Protection and Control - Appliance","alias":"ipc-information-protection-and-control-appliance","description":" Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC class hardware solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information.\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":" <span style=\"font-weight: bold;\">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC apparel solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold;\">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold;\">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_IPC_Information_Protection_and_Control_Appliance.png"},{"id":750,"title":"Biometric Identification","alias":"biometric-identification","description":"<p itemprop=\"headline\">Biometric systems use people’s intrinsic physical characteristics to verify their identification. The characteristics that can be used by biometric systems include fingerprints, facial identification systems, voice recognition systems and in new developments – the analysis of DNA. Biometric security systems are applied wherever there is a need for personal identification where control of access to material objects or information is required.</p>\r\n<p itemprop=\"headline\" class=\"align-center\"><span style=\"font-weight: bold; \">Types of biometric identification</span></p>\r\n<ul><li><span style=\"font-weight: bold; \">DNA Matching.</span> The identification of an individual using the analysis of segments from DNA.</li><li><span style=\"font-weight: bold; \">Ear.</span> The identification of an individual using the shape of the ear.</li><li><span style=\"font-weight: bold; \">Eyes - Iris Recognition.</span> The use of the features found in the iris to identify an individual.</li><li><span style=\"font-weight: bold; \">Eyes - Retina Recognition.</span> The use of patterns of veins in the back of the eye to accomplish recognition.</li><li><span style=\"font-weight: bold; \">Face Recognition. </span>The analysis of facial features or patterns for the authentication or recognition of an individuals identity. Most face recognition systems either use eigenfaces or local feature analysis.</li><li><span style=\"font-weight: bold; \">Fingerprint Recognition.</span> The use of the ridges and valleys (minutiae) found on the surface tips of a human finger to identify an individual.</li><li><span style=\"font-weight: bold; \">Finger Geometry Recognition.</span> The use of 3D geometry of the finger to determine identity.</li><li><span style=\"font-weight: bold; \">Gait.</span> The use of an individuals walking style or gait to determine identity.</li><li><span style=\"font-weight: bold; \">Odour. </span>The use of an individuals odor to determine identity.</li><li><span style=\"font-weight: bold; \">Hand Geometry Recognition. </span>The use of the geometric features of the hand such as the lengths of fingers and the width of the hand to identify an individual.</li><li><span style=\"font-weight: bold; \">Typing Recognition. </span>The use of the unique characteristics of a persons typing for establishing identity.</li><li><span style=\"font-weight: bold; \">Hand Vein Recognition. </span>Vein recognition is a type of biometrics that can be used to identify individuals based on the vein patterns in the human finger or palm.</li><li><span style=\"font-weight: bold; \">Voice - Speaker Identification. </span>Identification is the task of determining an unknown speaker’s identity. Speaker identification is a 1:N (many) match where the voice is compared against N templates. Speaker identification systems can also be implemented covertly without the user’s knowledge to identify talkers in a discussion, alert automated systems of speaker changes, check if a user is already enrolled in a system, etc.</li><li><span style=\"color: rgb(97, 97, 97); \"><span style=\"font-weight: bold; \">Voice - Speaker Verification/Authentication.</span>The use of the voice as a method of determining the identity of a speaker for access control. If the speaker claims to be of a certain identity and the voice is used to verify this claim. Speaker verification is a 1:1 match where one speaker’s voice is matched to one template (also called a “voice print” or “voice model”). Speaker verification is usually employed as a “gatekeeper” in order to provide access to a secure system (e.g.: telephone banking). These systems operate with the user’s knowledge and typically require their cooperation.</span></li><li> <span style=\"font-weight: bold; \">Signature Recognition.</span> The authentication of an individual by the analysis of handwriting style, in particular the signature. There are two key types of digital handwritten signature authentication, Static and Dynamic. Static is most often a visual comparison between one scanned signature and another scanned signature, or a scanned signature against an ink signature. Technology is available to check two scanned signatures using advances algorithms. Dynamic is becoming more popular as ceremony data is captured along with the X,Y,T and P Coordinates of the signor from the signing device. This data can be utilised in a court of law using digital forensic examination tools, and to create a biometric template from which dynamic signatures can be authenticated either at time of signing or post signing, and as triggers in workflow processes.</li></ul>\r\n<br /><br />","materialsDescription":"<h1 class=\"align-center\"> Biometric Identification or Biometric Authentication?<span style=\"font-weight: bold; \"><br /></span></h1>\r\n<span style=\"font-weight: bold; \">Biometric identification</span> answers the question “who are you” and can be applied to both physical and digital scenarios. It is an established solution that is being used in many applications including law enforcement, defense, and border control.\r\nBiometric identification system usually applies to a situation where an organization needs to identify a person. The organization captures a biometric from that individual and then searches a biometric id system repository in an attempt to correctly identify the person. The biometric repository could be managed by a law enforcement agency, such as the Integrated Automated Fingerprint System (IAFIS) run by the FBI in the USA, or be part of a national identity system like India’s UIDAI system.\r\n<span style=\"font-weight: bold; \">Biometric authentication </span>asks the question “can you prove who you are” and is predominantly related to proof of identity in digital scenarios. A <span style=\"font-size:10pt; font-family:Arial; font-style:normal; \">biometric identity verification</span>system will challenge someone to prove their identity and the person has to respond in order to allow them access to a system or service.\r\nBiometric authentication involves use of a factor that is something a person is – a biometric identifier from a person can include a fingerprint, their voice, face, or even their behavior. This biometric is indexed against other identifiers, such as a user id or employee number, with the identifier being matched against a single stored biometric template – one-to-one match.\r\n<h1 class=\"align-center\">Where is biometric identification technology used?</h1>\r\nHistorically, applications using have been predominantly initiated by authorities for military access control, criminal or civil identification under a tightly regulated legal and technical framework. \r\nToday, sectors, including banking, retail, and mobile commerce, are demonstrating a real appetite for the benefits of biometric identity systems.<br />Most importantly, awareness and acceptance have been boosted in the past seven years, as millions of smartphone users are unlocking their phones with a fingerprint or a face. The most typical use cases of biometric technologies are:\r\n<ul><li>Law enforcement and public security (criminal/suspect identification)</li><li>Military (enemy/ally identification)</li><li>Border, travel, and migration control (traveler/migrant/passenger identification)</li><li>Civil identification (citizen/resident/voter identification)</li><li>Healthcare and subsidies (patient/beneficiary/healthcare professional identification)</li><li>Physical and logical access (owner/user/employee/contractor/partner identification)</li><li>Commercial applications (consumer/customer identification)</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Biometric_Identification.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":5636,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/lanner_lec-3034.jpg","logo":true,"scheme":false,"title":"Lanner Electronics LEC-3034","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"lanner-electronics-lec-3034","companyTitle":"Lanner Electronics","companyTypes":["supplier","vendor"],"companyId":5268,"companyAlias":"lanner-electronics","description":"<b>Lanner LEC-3034 Series</b> is a wireless rugged fanless edge gateway featuring dual-core Intel® Atom E3825 (codenamed BayTrail), optional 4G-LTE Mobile Connectivity, DDR3L SO-DIMM memory up to 8GB, 1 x SATA connector with 2.5” drive bay, mSATA mini socket, VGA display, wide operating temperature, DIN Rail/Wall-mounting options and a variety of isolated protection serial COM/LAN configurations for various industrial IoT needs. \r\n<b>Features:</b>\r\n<ul> <li>Fanless and compact design </li> <li>Onboard Intel® Atom™ E3825 CPU </li> <li>Optional 4G-LTE Mobile Connectivity </li> <li>Multiple Isolated RS-232/422/485 ports </li> <li>4x or 2x 1.5KV Magnetic Isolated GbE LAN ports, 2x USB ports </li> <li>Wide operating temperature: -40 ~ 70ºC </li> <li>DIN rail or wall mount </li> <li>VGA output </li> <li>1x or 3 x USB 2.0 type A + 1 x USB 3.0 Type A </li> </ul>","shortDescription":"Wireless Rugged Edge Gateway with Intel® Atom E3825 Processor\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":8,"sellingCount":12,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Lanner Electronics LEC-3034","keywords":"","description":"<b>Lanner LEC-3034 Series</b> is a wireless rugged fanless edge gateway featuring dual-core Intel® Atom E3825 (codenamed BayTrail), optional 4G-LTE Mobile Connectivity, DDR3L SO-DIMM memory up to 8GB, 1 x SATA connector with 2.5” drive bay, mSATA mini socket, ","og:title":"Lanner Electronics LEC-3034","og:description":"<b>Lanner LEC-3034 Series</b> is a wireless rugged fanless edge gateway featuring dual-core Intel® Atom E3825 (codenamed BayTrail), optional 4G-LTE Mobile Connectivity, DDR3L SO-DIMM memory up to 8GB, 1 x SATA connector with 2.5” drive bay, mSATA mini socket, ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/lanner_lec-3034.jpg"},"eventUrl":"","translationId":5635,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3847,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/WT-500_1.JPG","logo":true,"scheme":false,"title":"Waterfall Unidirectional CloudConnect","vendorVerified":0,"rating":"0.00","implementationsCount":1,"suppliersCount":0,"supplierPartnersCount":0,"alias":"waterfall-unidirectional-cloudconnect","companyTitle":"Waterfall Security Solutions","companyTypes":["supplier","vendor"],"companyId":5242,"companyAlias":"waterfall-security-solutions","description":"The Industrial Internet of Things (IIoT) promises revolutionary improvements in the efficiencies of industrial operations, manufacturing platforms, transportation systems, and utilities. However, these benefits require the massive deployment of connected devices that gather and communicate data, thereby increasing cyber-security attack surfaces dramatically, and opening paths for attackers to enter industrial networks\r\nThe answer for all of your IIoT cybersecurity needs is the Unidirectional CloudConnect. The CloudConnect acts as an Industrial IoT gateway, collecting data from industrial sources such as historians, industrial control systems, OPC serves and industrial devices then coverting that data into a unified, cloud-friendly format, such as GE WebSockets, Azure IoT and SOAP Web Services. The CloudConnect then transmits the unified data securely out of the site and publishes into the industrial cloud. Unidirectional Gateway technology embedded in the CloudConnect ensures seamless connectivity with both industrial and cloud systems, and provides absolute protection from cloud-based threats.\r\nWaterfall’s Unidirectional CloudConnect offers the highest level of IIoT cyber security, enabling data flow from industrial networks, directly into Internet-based and other cloud solutions, while preventing remote attacks from penetrating critical industrial networks.<br /><br /><span style=\"font-weight: bold;\">MAIN FEATURES</span>\r\nINDUSTRIAL CONNECTIVITY<br />Enables IT and outsourced SIEM, SOC, NOC & security monitoring solutions\r\nSAFE OT/CLOUD INTEGRATION<br />Physically prevents Cloud/Internetbased attacks from infecting the protected network\r\nSEAMLESS INTEROPERABILITY<br />Supports 100+ industrial protocols & applications; from legacy systems to cloud-based platforms\r\nINDUSTRIAL CLOUD<br />Enables big-data, cross-site, and crossapplication analysis and correlations<br /><br />The Unidirectional Cloud-Connect is a secure cloud gateway containing unidirectional technology consisting of both hardware and software components. The gateway hardware can transmit information from a control system network to an external network, but is physically incapable of propagating any cyber attack at all back into the protected network.","shortDescription":"The Unidirectional Cloud-Connect is a secure cloud gateway containing unidirectional technology consisting of both hardware and software components.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":3,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Waterfall Unidirectional CloudConnect","keywords":"","description":"The Industrial Internet of Things (IIoT) promises revolutionary improvements in the efficiencies of industrial operations, manufacturing platforms, transportation systems, and utilities. However, these benefits require the massive deployment of connected devic","og:title":"Waterfall Unidirectional CloudConnect","og:description":"The Industrial Internet of Things (IIoT) promises revolutionary improvements in the efficiencies of industrial operations, manufacturing platforms, transportation systems, and utilities. However, these benefits require the massive deployment of connected devic","og:image":"https://old.roi4cio.com/fileadmin/user_upload/WT-500_1.JPG"},"eventUrl":"","translationId":3848,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3849,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/BlackBox_Homepage2.jpg","logo":true,"scheme":false,"title":"Waterfall BlackBox","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"waterfall-blackbox","companyTitle":"Waterfall Security Solutions","companyTypes":["supplier","vendor"],"companyId":5242,"companyAlias":"waterfall-security-solutions","description":"Waterfall Security’s patented BlackBox leverages Waterfall’s-market-leading, hardware-enforced unidirectional technology to securely gather, store, and transmit transaction, logs and other data into a storage repository located securely “behind” a Unidirectional Gateway. All data sent to the storage repository is stored physically outside the monitored network, inaccessible and untouchable. \r\nInside Waterfall’s BlackBox cyber security incident response solution there is a high-speed, high-capacity logging and analysis system, which can be used to detect attackers’ tracks, attempted changes, manipulation of records and abnormal logging and recording conditions. In time of need, data can be retrieved and inspected securely by physically accessing the BlackBox appliance via the Secure Data Access port. The Waterfall BlackBox faceplate hardware physically blocks the Secure Data Access port when the port is not in use.<br /><br /><span style=\"font-weight: bold;\">Features & Benefits:</span>\r\nSECURE STORAGE\r\n<ul><li>Hardware-enforced unidirectional protection of logged data</li></ul>\r\n<ul><li>Tamper-proof storage for logs, transactions & configuration files</li></ul>\r\n<ul><li>Reliable forensics, incident response & recovery, and audits</li></ul>\r\n<ul><li>Encryption and authentication of logged information</li></ul>\r\n<ul><li>No possibility of leaking information between sites</li></ul>\r\nSECURE LOG DATA RETRIEVAL\r\n<ul><li>Logs accessed via dedicated out-of-band port</li></ul>\r\n<ul><li>Powerful graphical data management and retrieval applications</li></ul>\r\n<ul><li>Full or partial retrieval with search and filter capabilities</li></ul>\r\nDATA MANAGEMENT\r\n<ul><li>All logs unified and stored in internal relational database</li></ul>\r\n<ul><li>All recorded data time-stamped and encrypted</li></ul>\r\n<ul><li>Cyclic & never-overwrite data management options</li></ul>\r\n<ul><li>Version management for configuration and other files</li></ul>\r\n<ul><li>Real-time statistics display</li></ul>\r\n<ul><li>Optional compression</li></ul>\r\nWIDE VARIETY OF DATA SOURCES\r\n<ul><li>Syslog, SNMP traps, Windows logs</li></ul>\r\n<ul><li>FTP, SFTP, CIFS/SMB, drag & drop and many other file sources</li></ul>\r\n<ul><li>System Backups</li></ul>\r\n<ul><li>SQL Server, Oracle and other relational databases</li></ul>\r\n<ul><li>Network traffic and NetFlow statistics</li></ul>","shortDescription":"As an airplane black-box survives a crash, the Waterfall BlackBox survives a cyberattack, keeping your logs untampered and secure.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":9,"sellingCount":10,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Waterfall BlackBox","keywords":"","description":"Waterfall Security’s patented BlackBox leverages Waterfall’s-market-leading, hardware-enforced unidirectional technology to securely gather, store, and transmit transaction, logs and other data into a storage repository located securely “behind” a Unidirection","og:title":"Waterfall BlackBox","og:description":"Waterfall Security’s patented BlackBox leverages Waterfall’s-market-leading, hardware-enforced unidirectional technology to securely gather, store, and transmit transaction, logs and other data into a storage repository located securely “behind” a Unidirection","og:image":"https://old.roi4cio.com/fileadmin/user_upload/BlackBox_Homepage2.jpg"},"eventUrl":"","translationId":3850,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4361,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/SDS-logo.png","logo":true,"scheme":false,"title":"VitalSigns SIEM Agent for z/OS | VSA","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"vitalsigns-siem-agent-dlja-zos-vsa","companyTitle":"Software Diversified Services","companyTypes":["supplier","vendor"],"companyId":6758,"companyAlias":"software-diversified-services","description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</span> brings the mainframe into the center of your enterprise security infrastructure – in real time.\r\nIt quickly and easily separates critical incidents from everyday events so they can be tracked from all corners of the business\r\nVSA integrates with standard z/OS security facilities such as RACF, ACF2, and Top Secret to gather detailed information about mainframe security events from all z/OS systems and LPARs in your network.VSA acquires messages in real time from the z/OS system console and SMF (system management facility). \r\n<span style=\"font-weight: bold;\">Using powerful, field-level SMF filters, the agent determines which SMF events are critical.</span> The agent reformats the data as syslog, CEF, or LEEF events and forwards them to one or two enterprise SIEMs such as Splunk, LogRhythm, QRadar, AlienVault, ArcSight, and many others.The SIEM interprets the data, then delivers it to the people and systems responsible for enterprise security. Your security team has a central, end-to-end view of all the events they need to recognize. \r\nVSA can warn about threats before they become headlines. Simplified Compliance and Auditing Enterprise-wide monitoring of security events is critical, not only for tracking malicious activity, but also to attain today's demanding compliance standards. \r\nAdministrators can define specific items for extra levels of monitoring or auditing: files that contain credit information, for example, or health care details. Mainframe teams can rely on VSA to filter and format the right data to comply with strict audit policies.\r\n<span style=\"font-weight: bold;\">Compliance.</span> VSA is an invaluable tool to help your business comply with FISMA, GDPR, GLBA, HIPAA, PCI, SOX, and other standards. Administrators can define specific parameters to monitor with more detail and at greater depth, and automatically send data to any enterprise SIEM.<br />icon-feature\r\n<span style=\"font-weight: bold;\">Security.</span> With VSA monitoring the mainframes, your security team has a central, enterprise-wide view of all the events they need to capture and all the security threats they need to recognize.<br />icon-feature\r\n<span style=\"font-weight: bold;\">Transparency.</span> Mainframe security no longer needs to depend on batch jobs running long after any incident. Events are tracked and uncovered in real time, from all corners of the business.\r\nThis z/OS SIEM solution is flexible enough to integrate with any distributed SIEM product and is certified for CEF and LEEF formats. \r\n<span style=\"font-weight: bold;\">VSA is a Ready for IBM Security Intelligence product. </span> In addition, VSA integrates well and provides mainframe data to these SIEM solutions: Splunk, LogRhythm NextGen SIEM, AlienVault, ArcSight, McAfee® Enterprise Security Manager, and others.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">VSA Features</span></p>\r\n<ul><li>Interfaces inrealtime with standard z/OS security products: ACF2, Top Secret, RACF, DB2, CICS, FTP, TCP/IP, and others.</li><li>Monitors z/OS, DB2, and UNIX System Services (USS).</li><li>Powerful SMF filters identify critical events. </li><li>Provides real-time alerts to one or two central SIEMs, which interpret the data and route it to the security team. </li><li>Reduces costs by filtering records and minimizing the number of events sent to the SIEM.</li><li>APIs allow for defining and filtering TSO, CICS, and batch events.</li><li>Installs easily and quickly with minimal resources and no z/OS IPLs.</li><li>Simple or complex monitoring rules are easily defined using ISPF Edit.</li><li>Uses both signature-based and anomaly-based attack detection.</li><li>Configuration can be shared by VSA agents running on different LPARs.</li><li>Small footprint in each LPAR and little CPU overhead.</li><li>CEF and LEEF certified.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">Security Means Watch All the Doors</span></p>\r\n VSA software agents convert mainframe data to syslog, CEF, or LEEF events for delivery to SIEM technologies or to any other software that uses TCP/IP protocol. The enterprise SIEMs consolidate VSA information with security intelligence from other systems, such as UNIX, Windows, and Cisco. \r\nThe SIEMs can then analyze and visualize data across the spectrum.You no longer need multiple security teams to guard multiple platforms. You get total visibility into the z/OS environment, as well as distributed and open systems environments.<br /><br />","shortDescription":"Integrate mainframe security events into your existing SIEM solution. Real-Time Mainframe Security Events Delivered to Any Enterprise SIEM.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":3,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"VitalSigns SIEM Agent for z/OS | VSA","keywords":"","description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</spa","og:title":"VitalSigns SIEM Agent for z/OS | VSA","og:description":"Recent headlines prove that any business can be hacked. To minimize the risk of a system breach, it's imperative to find security issues now, not hours later after batch jobs are run.\r\n <span style=\"font-weight: bold;\">VitalSigns SIEM Agent for z/OS (VSA)</spa","og:image":"https://old.roi4cio.com/fileadmin/user_upload/SDS-logo.png"},"eventUrl":"","translationId":4362,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":5130,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Kemp_logo.png","logo":true,"scheme":false,"title":"Kemp LoadMaster 3000","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"kemp-loadmaster-3000","companyTitle":"Kemp","companyTypes":["vendor"],"companyId":8201,"companyAlias":"kemp","description":"<span style=\"font-weight: bold; \">LM-3000 Server Load Balancer</span> - The LoadMaster 3000 provides Intelligent Application Delivery for Growing Organizations and features:\r\n<ul><li>4x GbE ports</li><li>1.7 Gbps L4 balancer throughput</li><li>SSL TPS (2K Keys): 1,000</li><li>SSL TPS (1K Keys): 2,000</li><li>Servers Supported: 1,000 Physical /1,000 Virtual</li><li>L4 Concurrent Connections: 8,600,000</li></ul>\r\nAgile organizations require end-to-end technology deployments that can support them as their application performance requirements grow. Kemp’s LoadMaster 3000 delivers comprehensive performance scaling to 1.7 Gbps application throughput and 1000 SSL transactions per second (TPS) combined with content switching, data compression and caching to meet the needs of dynamic, expanding infrastructures.\r\nThe LoadMaster 3000 is an essential component to include for high availability of critical line of business applications, internet facing web services and corporate intranets in small to medium sized deployments.\r\nCombining the latest advancements in Layer 4 to Layer 7 application delivery technology with features such as single sign-on, LoadMaster is the ADC of choice for providing high availability services across a wide range of application workloads.","shortDescription":"LM-3000 is an essential component to include for high availability of critical line of business applications, internet facing web services and corporate intranets in small to medium sized deployments.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":13,"sellingCount":15,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Kemp LoadMaster 3000","keywords":"","description":"<span style=\"font-weight: bold; \">LM-3000 Server Load Balancer</span> - The LoadMaster 3000 provides Intelligent Application Delivery for Growing Organizations and features:\r\n<ul><li>4x GbE ports</li><li>1.7 Gbps L4 balancer throughput</li><li>SSL TPS (2K Keys","og:title":"Kemp LoadMaster 3000","og:description":"<span style=\"font-weight: bold; \">LM-3000 Server Load Balancer</span> - The LoadMaster 3000 provides Intelligent Application Delivery for Growing Organizations and features:\r\n<ul><li>4x GbE ports</li><li>1.7 Gbps L4 balancer throughput</li><li>SSL TPS (2K Keys","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Kemp_logo.png"},"eventUrl":"","translationId":5131,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":321,"title":"Workload Scheduling and Automation Software","alias":"workload-scheduling-and-automation-software","description":"","materialsDescription":"","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Workload_Scheduling_and_Automation_Software.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3851,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/WT-500_1.JPG","logo":true,"scheme":false,"title":"Waterfall FLIP","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"waterfall-flip","companyTitle":"Waterfall Security Solutions","companyTypes":["supplier","vendor"],"companyId":5242,"companyAlias":"waterfall-security-solutions","description":"Many industrial control systems require regular updates of anti-virus signatures, batch production orders and other items. Every path for such updates through a firewall though, introduces attack opportunities, since all firewalls are software and all software can be hacked or misconfigured. The Waterfall FLIP is a type of Unidirectional Gateway whose orientation can be reversed, enabling disciplined scheduled updates without the vulnerabilities firewalls always introduce.\r\nThe FLIP is a combination of hardware and software. The hardware includes a TX Module, containing a fiberoptic transmitter/laser, and an RX Module, containing an optical receiver, but no laser. A short fiber-optic cable connects the two hardware Modules. The FLIP is therefore able to transmit information in only one direction at a time. While the FLIP hardware transmits information from a source network to a destination network, that hardware is physically incapable of transmitting any information back from the destination network into the source network. Hardware orientation reversals are triggered by dedicated hardware on a schedule, or by manual activation from the front panel of the FLIP Module.\r\nThe FLIP software replicates servers and emulates devices. Clients and users on each network access the replicas as if they were the originals, making the FLIP a plug-and-play replacement for software firewalls. Unlike firewalls, the FLIP is not a router and is incapable of forwarding network traffic or network attacks.<br /><br />","shortDescription":"The Waterfall FLIP is a type of Unidirectional Gateway whose orientation can be reversed, enabling disciplined scheduled updates without the vulnerabilities firewalls always introduce.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Waterfall FLIP","keywords":"","description":"Many industrial control systems require regular updates of anti-virus signatures, batch production orders and other items. Every path for such updates through a firewall though, introduces attack opportunities, since all firewalls are software and all software","og:title":"Waterfall FLIP","og:description":"Many industrial control systems require regular updates of anti-virus signatures, batch production orders and other items. Every path for such updates through a firewall though, introduces attack opportunities, since all firewalls are software and all software","og:image":"https://old.roi4cio.com/fileadmin/user_upload/WT-500_1.JPG"},"eventUrl":"","translationId":3852,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4620,"logoURL":"https://old.roi4cio.com/fileadmin/content/u250x-ROI4CIO.jpg","logo":true,"scheme":false,"title":"WiJungle U250X (NextGen Firewall/UTM + Web Application Firewall + Hotspot Gateway + Load Balancer Router + VPN Router) With 3 Years License ","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"wijungle-u35-nextgen-firewallutm-appliance-web-application-firewall-appliance-hotspot-gateway-appliance-load-balancer-router-vpn-router-with-3-years-license","companyTitle":"WiJungle","companyTypes":["supplier","vendor"],"companyId":7007,"companyAlias":"wijungle","description":"<p><span class=\"c-message__body\" data-qa=\"message-text\">WiJungle seamlessly manages the network, internet and security of different business verticals like Enterprises, Education, Hospitality, Healthcare, Retail, Transport, Smart City, Defence, Residential Estates, Events etc. across the globe.<br />The product is available in 30+ different models to serve wide range of concurrent users with throughput range from 3.2 Gbps to 240 Gbps.<br /></span><br />It offers features like</p>\r\n<ul>\r\n<li>Access/Interface Management</li>\r\n<li>Network Management</li>\r\n<li>User/Guest Management</li>\r\n<li>BandWidth Management</li>\r\n<li>Quality Of Service</li>\r\n<li>Data Leakage Prevention</li>\r\n<li>Content Filtering</li>\r\n<li>Load Balancing</li>\r\n<li>High Availability</li>\r\n<li>Gateway Anti-Virus</li>\r\n<li>Anti-Spam</li>\r\n<li>Web Server Protection</li>\r\n<li>Sandbox</li>\r\n<li>Advance Threat Protection</li>\r\n<li>Intrusion Prevention System</li>\r\n<li>Virtual Private Network</li>\r\n<li>Vulnerability Assessment</li>\r\n<li>Intuitive & Location Aware Captive Portals</li>\r\n<li>SMS Gateway Integration</li>\r\n<li>Social Media Engagement/Advertisement option</li>\r\n<li>Feedback Management</li>\r\n<li>User Logging</li>\r\n<li>Reporting and Analytics</li>\r\n<li>Prepaid/Postpaid Billing</li>\r\n<li>Voucher Management</li>\r\n<li>PMS/HIS Integration</li>\r\n<li>AP/Device Management</li>\r\n<li>Alert Management</li>\r\n</ul>\r\n<p> </p>","shortDescription":"WiJungle is a Unified Network Security Gateway Appliance that combinedly serves as NextGen Firewall/Unified Threat Management, Web Application Firewall, Hotspot Gateway, Vulnerability Assessment etc.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":1,"sellingCount":19,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"WiJungle U250X (NextGen Firewall/UTM + Web Application Firewall + Hotspot Gateway + Load Balancer Router + VPN Router) With 3 Years License ","keywords":"","description":"<p><span class=\"c-message__body\" data-qa=\"message-text\">WiJungle seamlessly manages the network, internet and security of different business verticals like Enterprises, Education, Hospitality, Healthcare, Retail, Transport, Smart City, Defence, Residential Est","og:title":"WiJungle U250X (NextGen Firewall/UTM + Web Application Firewall + Hotspot Gateway + Load Balancer Router + VPN Router) With 3 Years License ","og:description":"<p><span class=\"c-message__body\" data-qa=\"message-text\">WiJungle seamlessly manages the network, internet and security of different business verticals like Enterprises, Education, Hospitality, Healthcare, Retail, Transport, Smart City, Defence, Residential Est","og:image":"https://old.roi4cio.com/fileadmin/content/u250x-ROI4CIO.jpg"},"eventUrl":"","translationId":4620,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":443,"title":"Application Delivery Controller (load balancer) - appliance","alias":"application-delivery-controller-load-balancer-appliance","description":" Application Delivery Controllers are the next generation of load balancers, and are typically located between the firewall/router and the web server farm. An application delivery controller is a network device that helps sites direct user traffic to remove excess load from two or more servers. In addition to providing Layer 4 load balancing, ADCs can manage Layer 7 for content switching, and also provide SSL offload and acceleration. They tend to offer more advanced features such as content redirection as well as server health monitoring. An Application delivery controller may also be known as a Web switch, URL switch, Web content switch, content switch and Layer 7 switch.\r\nToday, advanced application delivery controllers and intelligent load balancers are not only affordable, but the consolidation of Layer 4-7 load balancing and content switching, and server offload capabilities such as SSL, data caching and compression provides companies with cost-effective out-of-the-box infrastructure.\r\nFor enterprise organizations (companies with 1,000 or more employees), integrating best-of-breed network infrastructure is commonplace. However best-of-breed does not equate with deploying networks with enterprise-specific features and expensive products, but rather, deploying products that are purpose-built, with the explicit features, performance, reliability and scalability created specifically for the companies of all sizes.\r\nIn general, businesses of all sizes are inclined to purchase “big brand” products. However, smaller vendors that offer products within the same category can provide the optimal performance, features and reliability required, with the same benefits - at a lower cost.\r\nFor the enterprise market, best-of-breed comes with a high Total Cost of Ownership (TCO), since deploying products from various manufacturers requires additional training, maintenance and support. Kemp can help SMBs lower their TCO, and help them build reliable, high performance and scalable web and application infrastructure. Kemp products have a high price/performance value for SMBs. Our products are purpose-built for SMB businesses for dramatically less than the price of “big name” ADC and SLB vendors who are developing features that enterprise customers might use.","materialsDescription":" <span style=\"font-weight: bold;\">What are application delivery controllers?</span>\r\nApplication Delivery Controllers (ADCs) are the next stage in the development of server load balancing solutions. ADCs allow you to perform not only the tasks of balancing user requests between servers, but also incorporate mechanisms that increase the performance, security and resiliency of applications, as well as ensure their scalability.\r\n<span style=\"font-weight: bold;\">And what other possibilities do application controllers have?</span>\r\nIn addition to the function of uniform distribution of user requests, application delivery controllers have many other interesting features. They can provide around-the-clock availability of services, improve web application performance up to five times, reduce risks when launching new services, protect confidential data, and publish internal applications to the outside with secure external access (a potential replacement for outgoing Microsoft TMG).\r\nOne of the most important functions of application delivery controllers, which distinguish them from simple load balancers, is the presence of a functional capable of processing information issued to the user based on certain rules.\r\n<span style=\"font-weight: bold;\">What are the prerequisites for implementing application delivery controllers in a particular organization?</span>\r\nA number of factors can determine the criteria for deciding whether to implement application controllers in your organization. First, this is the poor performance of web services, which is a long download of content, frequent hangs and crashes. Secondly, such a prerequisite can be interruptions in the work of services and communication channels, expressed in failures in the transmitting and receiving equipment that ensures the operation of the data transmission network, as well as failures in the operation of servers.\r\nIn addition, it is worth thinking about implementing application delivery controllers if you use Microsoft TMG or Cisco ACE products, since they are no longer supported by the manufacturer. A prerequisite for the implementation of ADC may be the launch of new large web projects, since this process will inevitably entail the need to ensure the operability of this web project with the maintenance of high fault tolerance and performance.\r\nAlso, controllers are needed when you need to provide fault tolerance, continuous availability and high speed of applications that are consolidated in the data center. A similar situation arises when it is necessary to build a backup data center: here you also need to ensure fault tolerance between several data centers located in different cities.\r\n<span style=\"font-weight: bold;\">What are the prospects for the introduction of application controllers in Russia and in the world?</span>\r\nGartner's research shows that there have recently been marked changes in the market for products that offer load balancing mechanisms. In this segment, user demand shifts from servers implementing a simple load balancing mechanism to devices offering richer functionality.\r\nGartner: “The era of load balancing has long gone, and companies need to focus on products that offer richer application delivery functionality.”\r\nIn Russia, due to the specifics of the internal IT market, application controllers are implemented mainly because of the presence of some specific functionality, and not because of the comprehensive solution for delivering applications in general, which this product offers. The main task for which application delivery controllers are now most often sold is the same load balancing function as before.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Application_Delivery_Controller_load_balancer_appliance.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":475,"title":"Network Management - Hardware","alias":"network-management-hardware","description":" Your business is much more than just a machine that dispenses products or services in exchange for money. It’s akin to a living and breathing thing. Just as with the human body, in business, all the parts are interconnected and work together to move things forward.\r\nIf a company’s management is the brain, then its employees are the muscles. Muscles don’t work without the oxygen carried to them by the blood. Blood doesn’t pump through the body without the heart and circulatory system.\r\nData moves through your network like blood through veins, delivering vital information to employees who need it to do their jobs. In a business sense, the digital network is the heart and circulatory system. Without a properly functioning network, the entire business collapses. That’s why keeping networks healthy is vitally important. Just as keeping the heart healthy is critical to living a healthy life, a healthy network is a key to a thriving business. It starts with network management.\r\nNetwork management is hardware with a broad range of functions including activities, methods, procedures and the use of tools to administrate, operate, and reliably maintain computer network systems.\r\nStrictly speaking, network Management does not include terminal equipment (PCs, workstations, printers, etc.). Rather, it concerns the reliability, efficiency and capacity/capabilities of data transfer channels.","materialsDescription":" <span style=\"font-weight: bold;\">What Is Network Management?</span>\r\nNetwork management refers to the processes, tools, and applications used to administer, operate and maintain network infrastructure. Performance management and fault analysis also fall into the category of network management. To put it simply, network management is the process of keeping your network healthy, which keeps your business healthy.\r\n<span style=\"font-weight: bold;\">What Are the Components of Network Management?</span>\r\nThe definition of network management is often broad, as network management involves several different components. Here are some of the terms you’ll often hear when network management or network management software is talked about:\r\n<ul><li>Network administration</li><li>Network maintenance</li><li>Network operation</li><li>Network provisioning</li><li>Network security</li></ul>\r\n<span style=\"font-weight: bold;\">Why Is Network Management so Important When It Comes to Network Infrastructure?</span>\r\nThe whole point of network management is to keep the network infrastructure running smoothly and efficiently. Network management helps you:\r\n<ul><li><span style=\"font-style: italic;\">Avoid costly network disruptions.</span> Network downtime can be very costly. In fact, industry research shows the cost can be up to $5,600 per minute or more than $300K per hour. Network disruptions take more than just a financial toll. They also have a negative impact on customer relationships. Slow and unresponsive corporate networks make it harder for employees to serve customers. And customers who feel underserved could be quick to leave.</li><li><span style=\"font-style: italic;\">Improve IT productivity.</span> By monitoring every aspect of the network, an effective network management system does many jobs at once. This frees up IT staff to focus on other things.</li><li><span style=\"font-style: italic;\">Improve network security.</span> With a focus on network management, it’s easy to identify and respond to threats before they propagate and impact end-users. Network management also aims to ensure regulatory and compliance requirements are met.</li><li><span style=\"font-style: italic;\">Gain a holistic view of network performance.</span> Network management gives you a complete view of how your network is performing. It enables you to identify issues and fix them quickly.</li></ul>\r\n<span style=\"font-weight: bold;\">What Are the Challenges of Maintaining Effective Network Management and Network Infrastructure?</span>\r\nNetwork infrastructures can be complex. Because of that complexity, maintaining effective network management is difficult. Advances in technology and the cloud have increased user expectations for faster network speeds and network availability. On top of that, security threats are becoming ever more advanced, varied and numerous. And if you have a large network, it incorporates several devices, systems, and tools that all need to work together seamlessly. As your network scales and your company grows, new potential points of failure are introduced. Increased costs also come into play.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Management_Hardware__1_.png"},{"id":536,"title":"WAN optimization - appliance","alias":"wan-optimization-appliance","description":" WAN optimization appliance is a collection of techniques for increasing data-transfer efficiencies across wide-area networks (WANs). In 2008, the WAN optimization market was estimated to be $1 billion and was to grow to $4.4 billion by 2014 according to Gartner, a technology research firm. In 2015 Gartner estimated the WAN optimization market to be a $1.1 billion market.\r\nThe most common measures of TCP data-transfer efficiencies (i.e., optimization) are throughput, bandwidth requirements, latency, protocol optimization, and congestion, as manifested in dropped packets. In addition, the WAN itself can be classified with regards to the distance between endpoints and the amounts of data transferred. Two common business WAN topologies are Branch to Headquarters and Data Center to Data Center (DC2DC). In general, "Branch" WAN links are closer, use less bandwidth, support more simultaneous connections, support smaller connections and more short-lived connections, and handle a greater variety of protocols. They are used for business applications such as email, content management systems, database application, and Web delivery. In comparison, "DC2DC" WAN links tend to require more bandwidth, are more distant and involve fewer connections, but those connections are bigger (100 Mbit/s to 1 Gbit/s flows) and of longer duration. Traffic on a "DC2DC" WAN may include replication, back up, data migration, virtualization, and other Business Continuity/Disaster Recovery (BC/DR) flow.\r\nWAN optimization has been the subject of extensive academic research almost since the advent of the WAN. In the early 2000s, research in both the private and public sectors turned to improve the end-to-end throughput of TCP, and the target of the first proprietary WAN optimization solutions was the Branch WAN. In recent years, however, the rapid growth of digital data, and the concomitant needs to store and protect it, has presented a need for DC2DC WAN optimization. For example, such optimizations can be performed to increase overall network capacity utilization, meet inter-datacenter transfer deadlines, or minimize average completion times of data transfers. As another example, private inter-datacenter WANs can benefit optimizations for fast and efficient geo-replication of data and content, such as newly computed machine learning models or multimedia content.\r\nComponent techniques of Branch WAN Optimization include deduplication, wide-area file services (WAFS), SMB proxy, HTTPS Proxy, media multicasting, web caching, and bandwidth management. Requirements for DC2DC WAN Optimization also center around deduplication and TCP acceleration, however, these must occur in the context of multi-gigabit data transfer rates. ","materialsDescription":" <span style=\"font-weight: bold;\">What techniques does WAN optimization have?</span>\r\n<ul><li><span style=\"font-weight: bold;\">Deduplication</span> – Eliminates the transfer of redundant data across the WAN by sending references instead of the actual data. By working at the byte level, benefits are achieved across IP applications.</li><li><span style=\"font-weight: bold;\">Compression</span> – Relies on data patterns that can be represented more efficiently. Essentially compression techniques similar to ZIP, RAR, ARJ, etc. are applied on-the-fly to data passing through hardware (or virtual machine) based WAN acceleration appliances.</li><li><span style=\"font-weight: bold;\">Latency optimization</span> – Can include TCP refinements such as window-size scaling, selective acknowledgments, Layer 3 congestion control algorithms, and even co-location strategies in which the application is placed in near proximity to the endpoint to reduce latency. In some implementations, the local WAN optimizer will answer the requests of the client locally instead of forwarding the request to the remote server in order to leverage write-behind and read-ahead mechanisms to reduce WAN latency.</li><li><span style=\"font-weight: bold;\">Caching/proxy</span> – Staging data in local caches; Relies on human behavior, accessing the same data over and over.</li><li><span style=\"font-weight: bold;\">Forward error correction</span> – Mitigates packet loss by adding another loss-recovery packet for every “N” packets that are sent, and this would reduce the need for retransmissions in error-prone and congested WAN links.</li><li><span style=\"font-weight: bold;\">Protocol spoofing</span> – Bundles multiple requests from chatty applications into one. May also include stream-lining protocols such as CIFS.</li><li><span style=\"font-weight: bold;\">Traffic shaping</span> – Controls data flow for specific applications. Giving flexibility to network operators/network admins to decide which applications take precedence over the WAN. A common use case of traffic shaping would be to prevent one protocol or application from hogging or flooding a link over other protocols deemed more important by the business/administrator. Some WAN acceleration devices are able to traffic shape with granularity far beyond traditional network devices. Such as shaping traffic on a per-user AND per application basis simultaneously.</li><li><span style=\"font-weight: bold;\">Equalizing</span> – Makes assumptions on what needs immediate priority based on data usage. Usage examples for equalizing may include wide open unregulated Internet connections and clogged VPN tunnels.</li><li><span style=\"font-weight: bold;\">Connection limits</span> – Prevents access gridlock in and to denial of service or to peer. Best suited for wide-open Internet access links, can also be used links.</li><li><span style=\"font-weight: bold;\">Simple rate limits</span> – Prevents one user from getting more than a fixed amount of data. Best suited as a stop-gap first effort for remediating a congested Internet connection or WAN link.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_WAN_optimization_appliance.png"},{"id":542,"title":"UTM - Unified Threat Management Appliance","alias":"utm-unified-threat-management-appliance","description":"A unified threat management (UTM) system is a type of network hardware appliance that protects businesses from security threats in a simplified way by combining and integrating multiple security services and features.<br />UTM devices are often packaged as network security appliances that can help protect networks against combined security threats, including malware and attacks that simultaneously target separate parts of the network.\r\nWhile UTM systems and next-generation firewalls (NGFWs) are sometimes comparable, UTM devices include added security features that NGFWs don't offer.\r\nUTM systems provide increased protection and visibility, as well as control over network security, which reduces complexity. UTM systems typically do this via inspection methods that address different types of threats.\r\nThese methods include:\r\n<ul><li>Flow-based inspection, also known as stream-based inspection, samples data that enters a UTM device, and then uses pattern matching to determine whether there is malicious content in the data flow.</li><li>Proxy-based inspection acts as a proxy to reconstruct the content entering a UTM device, and then executes a full inspection of the content to search for potential security threats. If the content is clean, the device sends the content to the user. However, if a virus or other security threat is detected, the device removes the questionable content, and then sends the file or webpage to the user.</li></ul>\r\nUTM devices provide a single platform for multiple network security functions and offer the benefit of a single interface for those security functions, as well as a single point of interface to monitor or analyze security logs for those different functions.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">How do UTM Appliances block a computer virus — or many viruses?</span>\r\nUnified threat management appliances have gained traction in the industry due to the emergence of blended threats, which are combinations of different types of malware and attacks that target separate parts of the network simultaneously. Preventing these types of attacks can be difficult when using separate appliances and vendors for each specific security task, as each aspect has to be managed and updated individually in order to remain current in the face of the latest forms of malware and cybercrime. By creating a single point of defense and providing a single console, UTM solutions make dealing with varied threats much easier.\r\nWhile unified threat management solutions do solve some network security issues, they aren't without some drawbacks, with the biggest one being that the single point of defense that an UTM appliance provides also creates a single point of failure. Because of this, many organizations choose to supplement their UTM device with a second software-based perimeter to stop any malware that got through or around the UTM firewall.\r\nWhat kind of companies use a Unified Threat Management system?\r\nUTM was originally for small to medium office businesses to simplify their security systems. But due to its almost universal applicability, it has since become popular with all sectors and larger enterprises. Developments in the technology have allowed it to scale up, opening UTM up to more types of businesses that are looking for a comprehensive gateway security solution.\r\n<span style=\"font-weight: bold;\">What security features does Unified Threat Management have?</span>\r\nAs previously mentioned, most UTM services include a firewall, antivirus and intrusion detection and prevention systems. But they also can include other services that provide additional security.\r\n<ul><li>Data loss prevention software to stop data from exfiltrating the business, which in turn prevents a data leak from occurring.</li><li>Security information and event management software for real-time monitoring of network health, which allows threats and points of weakness to be identified.</li><li>Bandwidth management to regulate and prioritize network traffic, ensuring everything is running smoothly without getting overwhelmed.</li><li>Email filtering to remove spam and dangerous emails before they reach the internal network, lowering the chance of a phishing or similar attack breaching your defenses.</li><li>Web filtering to prevent connections to dangerous or inappropriate sites from a machine on the network. This lowers the chance of infection through malvertising or malicious code on the page. It can also be used to increase productivity within a business, i.e. blocking or restricting social media, gaming sites, etc.</li><li>Application filtering to either a blacklist or whitelist which programs can run, preventing certain applications from communicating in and out of the network, i.e. Facebook messenger.</li></ul>\r\n<span style=\"font-weight: bold;\">What are the benefits of Unified Threat Management?</span>\r\n<ul><li><span style=\"font-weight: bold;\">Simplifies the network</span></li></ul>\r\nBy consolidating multiple security appliances and services into one, you can easily reduce the amount of time spent on maintaining many separate systems that may have become disorganized. This can also improve the performance of the network as there is less bloat. A smaller system also requires less energy and space to run.\r\n<ul><li><span style=\"font-weight: bold;\">Provides greater security and visibility</span></li></ul>\r\nA UTM system can include reporting tools, application filtering and virtual private network (VPN) capabilities, all of which defend your network from more types of threats or improve the existing security. Additionally, monitoring and analysis tools can help locate points of weakness or identify ongoing attacks.\r\n<ul><li><span style=\"font-weight: bold;\">Can defend from more sophisticated attacks</span></li></ul>\r\nBecause UTM defends multiple parts of a network it means that an attack targeting multiple points simultaneously can be repelled more easily. With cyber-attacks getting more sophisticated, having defenses that can match them is of greater importance.\r\nHaving several ways of detecting a threat also means a UTM system is more accurate at identifying potential attacks and preventing them from causing damage.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_UTM_Unified_Threat_Management_Appliance.png"},{"id":544,"title":"DLP - Appliance","alias":"dlp-appliance","description":"DLP (Data Loss Prevention) is a technology for preventing leakage of confidential information from an information system to the outside, as well as technical software and hardware devices for such prevention of leakage. According to most definitions, information leakage is the unauthorized distribution of restricted access data that is not controlled by the owner of this data. This implies that the person who committed the leak has the rights to access information.\r\nThe most effective way to ensure data security on corporate computers today is to use specialized data leakage prevention tools (Data Leak Prevention or DLP). DLP solutions are designed to eliminate the “human factor” and prevent misconduct by preventing (and fixing) data leaks from a computer for as many scripts as possible.\r\nEmail and webmail services, instant messaging services, social networks and forums, cloud file storages, FTP servers - all these benefits of the Internet can at any moment be a channel for leaking corporate information, disclosure of which may be undesirable or even dangerous for business.\r\nYou shouldn’t disregard traditional local channels - data storage devices (flash drives, disks, memory cards), printers and data transfer interfaces and synchronization with smartphones.\r\nAn effective DLP solution should control the widest possible range of network communications channels, local devices, and interfaces. At the same time, the effectiveness of a DLP solution is determined by the flexibility of the settings and the ability to ensure a successful combination of business interests and security.\r\nToday, DLP products are a rapidly growing information security industry, and new products are released very often. Installing a DLP system will allow you to distinguish confidential information from the usual, which in turn will reduce the cost of the entire complex for the protection of information and resources in general. No unimportant moment when choosing a DLP-system is its price, but Data Leak Prevention has a modularity that allows you to protect the channels you need and not pay extra for protecting unnecessary ones.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Loss Prevention (DLP)?</span>\r\nData loss prevention, or DLP, is a set of technologies, products, and techniques that are designed to stop sensitive information from leaving an organization.\r\nData can end up in the wrong hands whether it’s sent through email or instant messaging, website forms, file transfers, or other means. DLP strategies must include solutions that monitor for, detect, and block the unauthorized flow of information.\r\n<span style=\"font-weight: bold;\">How does DLP work?</span>\r\nDLP technologies use rules to look for sensitive information that may be included in electronic communications or to detect abnormal data transfers. The goal is to stop information such as intellectual property, financial data, and employee or customer details from being sent, either accidentally or intentionally, outside the corporate network.\r\n<span style=\"font-weight: bold;\">Why do organizations need DLP solutions?</span>\r\nThe proliferation of business communications has given many more people access to corporate data. Some of these users can be negligent or malicious. The result: a multitude of insider threats that can expose confidential data with a single click. Many government and industry regulations have made DLP a requirement.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DLP_Appliance.png"},{"id":546,"title":"WAF-web application firewall appliance","alias":"waf-web-application-firewall-appliance","description":"A web application firewall is a special type of application firewall that applies specifically to web applications. It is deployed in front of web applications and analyzes bi-directional web-based (HTTP) traffic - detecting and blocking anything malicious. The OWASP provides a broad technical definition for a WAF as “a security solution on the web application level which - from a technical point of view - does not depend on the application itself.” According to the PCI DSS Information Supplement for requirement 6.6, a WAF is defined as “a security policy enforcement point positioned between a web application and the client endpoint. This functionality can be implemented in hardware, running in an appliance device, or in a typical server running a common operating system. It may be a stand-alone device or integrated into other network components.” In other words, a WAF can be a physical appliance that prevents vulnerabilities in web applications from being exploited by outside threats. These vulnerabilities may be because the application itself is a legacy type or it was insufficiently coded by design. The WAF addresses these code shortcomings by special configurations of rule sets, also known as policies.\r\nPreviously unknown vulnerabilities can be discovered through penetration testing or via a vulnerability scanner. A web application vulnerability scanner, also known as a web application security scanner, is defined in the SAMATE NIST 500-269 as “an automated program that examines web applications for potential security vulnerabilities. In addition to searching for web application-specific vulnerabilities, the tools also look for software coding errors.” Resolving vulnerabilities is commonly referred to as remediation. Corrections to the code can be made in the application but typically a more prompt response is necessary. In these situations, the application of a custom policy for a unique web application vulnerability to provide a temporary but immediate fix (known as a virtual patch) may be necessary.\r\nWAFs are not an ultimate security solution, rather they are meant to be used in conjunction with other network perimeter security solutions such as network firewalls and intrusion prevention systems to provide a holistic defense strategy.\r\nWAFs typically follow a positive security model, a negative security model, or a combination of both as mentioned by the SANS Institute. WAFs use a combination of rule-based logic, parsing, and signatures to detect and prevent attacks such as cross-site scripting and SQL injection. The OWASP produces a list of the top ten web application security flaws. All commercial WAF offerings cover these ten flaws at a minimum. There are non-commercial options as well. As mentioned earlier, the well-known open source WAF engine called ModSecurity is one of these options. A WAF engine alone is insufficient to provide adequate protection, therefore OWASP along with Trustwave's Spiderlabs help organize and maintain a Core-Rule Set via GitHub to use with the ModSecurity WAF engine.","materialsDescription":"A Web Application Firewall or WAF provides security for online services from malicious Internet traffic. WAFs detect and filter out threats such as the OWASP Top 10, which could degrade, compromise or bring down online applications.\r\n<span style=\"font-weight: bold;\">What are Web Application Firewalls?</span>\r\nWeb application firewalls assist load balancing by examining HTTP traffic before it reaches the application server. They also protect against web application vulnerability and unauthorized transfer of data from the web server at a time when security breaches are on the rise. According to the Verizon Data Breach Investigations Report, web application attacks were the most prevalent breaches in 2017 and 2018.\r\nThe PCI Security Standards Council defines a web application firewall as “a security policy enforcement point positioned between a web application and the client endpoint. This functionality can be implemented in software or hardware, running in an appliance device, or in a typical server running a common operating system. It may be a stand-alone device or integrated into other network components.”\r\n<span style=\"font-weight: bold;\">How does a Web Application Firewall wWork?</span>\r\nA web application firewall (WAF) intercepts and inspects all HTTP requests using a security model based on a set of customized policies to weed out bogus traffic. WAFs block bad traffic outright or can challenge a visitor with a CAPTCHA test that humans can pass but a malicious bot or computer program cannot.\r\nWAFs follow rules or policies customized to specific vulnerabilities. As a result, this is how WAFs prevent DDoS attacks. Creating the rules on a traditional WAF can be complex and require expert administration. The Open Web Application Security Project maintains a list of the OWASP top web application security flaws for WAF policies to address.\r\nWAFs come in the form of hardware appliances, server-side software, or filter traffic as-a-service. WAFs can be considered as reverse proxies i.e. the opposite of a proxy server. Proxy servers protect devices from malicious applications, while WAFs protect web applications from malicious endpoints.\r\n<span style=\"font-weight: bold;\">What Are Some Web Application Firewall Benefits?</span>\r\nA web application firewall (WAF) prevents attacks that try to take advantage of the vulnerabilities in web-based applications. The vulnerabilities are common in legacy applications or applications with poor coding or designs. WAFs handle the code deficiencies with custom rules or policies.\r\nIntelligent WAFs provide real-time insights into application traffic, performance, security and threat landscape. This visibility gives administrators the flexibility to respond to the most sophisticated attacks on protected applications.\r\nWhen the Open Web Application Security Project identifies the OWASP top vulnerabilities, WAFs allow administrators to create custom security rules to combat the list of potential attack methods. An intelligent WAF analyzes the security rules matching a particular transaction and provides a real-time view as attack patterns evolve. Based on this intelligence, the WAF can reduce false positives.\r\n<span style=\"font-weight: bold;\">What Is the Difference Between a Firewall and a Web Application Firewall?</span>\r\nA traditional firewall protects the flow of information between servers while a web application firewall is able to filter traffic for a specific web application. Network firewalls and web application firewalls are complementary and can work together.\r\nTraditional security methods include network firewalls, intrusion detection systems (IDS) and intrusion prevention systems (IPS). They are effective at blocking bad L3-L4 traffic at the perimeter on the lower end (L3-L4) of the Open Systems Interconnection (OSI) model. Traditional firewalls cannot detect attacks in web applications because they do not understand Hypertext Transfer Protocol (HTTP) which occurs at layer 7 of the OSI model. They also only allow the port that sends and receives requested web pages from an HTTP server to be open or closed. This is why web application firewalls are effective for preventing attacks like SQL injections, session hijacking and Cross-Site Scripting (XSS).\r\n<span style=\"font-weight: bold;\">When Should You Use a Web Application Firewall?</span>\r\nAny business that uses a website to generate revenue should use a web application firewall to protect business data and services. Organizations that use online vendors should especially deploy web application firewalls because the security of outside groups cannot be controlled or trusted.\r\n<span style=\"font-weight: bold;\">How Do You Use a Web Application Firewall?</span>\r\nA web application firewall requires correct positioning, configuration, administration and monitoring. Web application firewall installation must include the following four steps: secure, monitor, test and improve. This should be a continuous process to ensure application specific protection.<br />The configuration of the firewall should be determined by the business rules and guardrails by the company’s security policy. This approach will allow the rules and filters in the web application firewall to define themselves.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_WAF_web_application_firewall_appliance.png"},{"id":550,"title":"Web filtering - Appliance","alias":"web-filtering-appliance","description":" <span style=\"font-weight: bold; \">A web filter appliance</span> is a device that allows the user to filter all online content for censorship purposes, such that any links, downloads, and email containing offensive materials or pornography is outright blocked or removed. Web filtering appliance can also help you prevent malware infection because, more often than not, malware is usually hidden within links that promise porn or controversial content. Moreover, because the number of online hazards is un stopped increasing every day, it's always prudent to get a web filter appliance that can adapt to the changing times and the ever-evolving hazards posed by the Internet.\r\nAt any rate, content filtering appliance has a distinct advantage over their software counterparts in terms of stable restriction features, unrestricted monitoring, no platform-based limitations, easy upgrades and improvements, and so on. That's because the best web filters are fully integrated software and hardware systems that optimize their hybrid attributes when it comes to content filtering by gaining full, unmitigated control over online usage through well-defined policies as mandated by the owner of the network or the IT security administrator.\r\nGetting a web content filtering appliance that has a list of premium-grade and detailed content analysis with predefined categories (which includes keywords for pornography, game downloads, drugs, violence, adult content, offensive content, racist content, controversial content, and the like) is a must for any major network. All of the items you'll ever need to block should be easily selectable with a click of your mouse as well; after all, sophisticated technology aside, a good web filter appliance should also be intuitive and practical to use as well.<br /> ","materialsDescription":"<h1 class=\"align-center\">How a Web Content Filter Appliance Works</h1>\r\n<p class=\"align-left\">Typically a web content filter appliance protects Internet users and networks by using a combination of blacklists, URIBL and SURBL filters, category filters and keyword filters. Blacklists, URIBL and SURBL filters work together to prevent users visiting websites known to harbor malware, those that have been identified as fake phishing sites, and those who hid their true identity by using the whois privacy feature or a proxy server. Genuine websites have no reason to hide their true identity.</p>\r\n<p class=\"align-left\">In the category filtering process, the content of millions of webpages are analyzed and assigned a category. System administrators can then choose which categories to block access to (i.e. online shopping, alcohol, pornography, gambling, etc.) depending on whether the web content filter appliance is providing a service to a business, a store, a school, a restaurant, or a workplace. Most appliances for filtering web content also offer the facility to create bespoke categories.</p>\r\n<p class=\"align-left\">Keyword filters have multiple uses. They can be used to block access to websites containing specific words (for example the business name of a competitor), specific file extensions (typically those most commonly used for deploying malware and ransomware), and specific web applications; if, for example, a business wanted to allow its marketing department access to Facebook, but not FaceTime. Effectively, the keyword filters fine-tune the category settings, enhance security and increase productivity.</p>\r\n<h1 class=\"align-center\">Are there any home web filter appliance?</h1>\r\nFor children today, the Internet has always existed. To them, it’s second nature to pop online and watch a funny video, find a fact, or chat with a friend. But, of course, the Internet is also filled with a lot of dark corners (It’s a hop, skip, and a click to adult content). Parents, then, are presented with the daunting task of not only monitoring what sites their children visit but also their screen time consumption. There are a number of home content filtering appliance that allow parents to do just this. The best parental control apps and devices, be they hardware or software, not only put parents in command of such things as the content their children can view and the amount of time they can spend online but help restore a parent’s sense of control. With them, parents, from can restrict access to only specific sites and apps, filter dangerous or explicit web-content, manage time, and even track their location.\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_filtering_Appliance.png"},{"id":552,"title":"Secure Web Gateway - Appliance","alias":"secure-web-gateway-appliance","description":"Secure web gateways are generally appliance-based security solutions that prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution.\r\nA secure web gateway is primarily used to monitor and prevent malicious traffic and data from entering, or even leaving, an organization’s network. Typically, it is implemented to secure an organization against threats originating from the Internet, websites and other Web 2.0 products/services. It is generally implemented through a hardware gateway device implemented at the outer boundaries of a network. Some of the features a secure Web gateway provides include URL filtering, application-level control, data leakage prevention, and virus/malware code detection.\r\nA Secure web gateway (SWG) protects users against phishing, malware and other Internet-borne threats. Unlike traditional firewalls, SWGs are focused on layer 7 web traffic inspection, both inbound and outbound. As web security solutions, they apply no protection to WAN traffic, which is left to the corporate next generation firewalls. In recent years, SWGs appeared as a cloud service. The cloud instances enable secure web and cloud access from anywhere – including outside the office by mobile users. The traffic coverage and solution form factor remain the key distinctions between SWGs and next generation firewalls, which often provide a very similar level of security capabilities.\r\nA converged, cloud-based network security solution converges the capabilities of a next generation firewall (WAN and Internet traffic inspection) and the extended coverage for mobile users of SWGs.\r\nA converged approach eliminates the need to maintain policies across multiple point solutions and the appliance life cycle.","materialsDescription":"<span style=\"font-weight: bold;\">Why is a secure web gateway important?</span>\r\nSecure web gateways have become increasingly common as cybercriminals have grown more sophisticated in embedding threat vectors into seemingly innocuous or professional-looking websites. These counterfeit websites can compromise the enterprise as users access them, unleashing malicious code and unauthorized access in the background without the user's knowledge. These fake, criminal websites can be quite convincing.\r\nSome of these scam websites appear to be so authentic that they can convince users to enter credit card numbers and personal identification information (PII) such as social security numbers. Other sites require only the connection to the user to bypass web browser controls and inject malicious code such as viruses or malware into the user's network. Examples include fake online shopping sites posing as brand-name sellers, sites that appear to be legitimate government agencies and even business-to-business intranets. Secure web gateways can also prevent data from flowing out of an organization, making certain that restricted data is blocked from leaving the organization.\r\n<span style=\"font-weight: bold;\">How does a secure web gateway work?</span>\r\nSecure web gateways are installed as a software component or a hardware device on the edge of the network or at user endpoints. All traffic to and from users to other networks must pass through the gateway that monitors it. The gateway monitors this traffic for malicious code, web application use, and all user/non-user attempted URL connections.\r\nThe gateway checks or filters website URL addresses against stored lists of known and approved websites—all others not on the approved lists can be explicitly blocked. Known malicious sites can be explicitly blocked as well. URL filters that maintain allowed web addresses are maintained in whitelists, while known, off-limits sites that are explicitly blocked are maintained in blacklists. In enterprises, these lists are maintained in the secure gateway's database, which then applies the list filters to all incoming and outgoing traffic.\r\nSimilarly, data flowing out of the network can be checked, disallowing restricted data sources—data on the network or user devices that are prohibited from distribution. Application-level controls can also be restricted to known and approved functions, such as blocking uploads to software-as-a-service (SaaS) applications (such as Office 365 and Salesforce.com). Although some enterprises deploy secure web gateways in hardware appliances that filter all incoming and outgoing traffic, many organizations use cloud-based, SaaS secure web gateways as a more flexible and less costly solution to deploy and maintain. Organizations with existing hardware investments often combine the two, using hardware at their larger physical sites and cloud-based gateways for remote locations and traveling workers.\r\n<span style=\"font-weight: bold;\">What are some features of secure web gateways?</span>\r\nBeyond basic URL, web application control and data filtering, secure web gateways should provide additional controls and features that enhance network security.\r\n<ul><li>Encrypted traffic analysis. The gateway should compare all traffic to local and global threat lists and reputation sources first, then also analyze the nature of the traffic itself to determine if any content or code poses a threat to the network. This should include SSL-based encrypted traffic.</li><li>Data Loss Prevention. If, for example, a website accepts uploaded documents or data, the documents should first be scanned for sensitive data before being uploaded.</li><li>Social media protection. All information to and from social media should be scanned and filtered.</li><li>Support for all protocols. HTTP, HTTPS, and FTP internet protocols must be supported. While HTTPS is the industry standard now, many sites still support HTTP and FTP connections.</li><li>Integration with zero-day anti-malware solutions. Threats will be discovered, and integration with anti-malware solutions that can detect zero-day (never seen before) threats deliver the best prevention and remediation.</li><li>Integration with security monitoring. Security administrators should be notified of any web gateway security problems via their monitoring solution of choice, typically a security information and event management (SIEM) solution.</li><li>Choice of location. Choose where your secure web gateway best fits in your network—the edge, at endpoints, or in the cloud.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Secure_Web_Gateway_Appliance.png"},{"id":556,"title":"Antispam - Appliance","alias":"antispam-appliance","description":"Anti-spam appliances are software or hardware devices integrated with on-board software that implement spam filtering and/or anti-spam for instant messaging (also called "spim") and are deployed at the gateway or in front of the mail server. They are normally driven by an operating system optimized for spam filtering. They are generally used in larger networks such as companies and corporations, ISPs, universities, etc.\r\nThe reasons hardware anti-spam appliances might be selected instead of software could include:\r\n<ul><li>The customer prefers to buy hardware rather than software</li><li>Ease of installation</li><li>Operating system requirements</li><li>Independence of existing hardware</li></ul>","materialsDescription":"<span style=\"font-weight: bold;\">How does an Antispam Appliance Work?</span>\r\nSince an antispam appliance is hardware, it can be placed at the entry point of the email server to inspect and filter every message that enters the email server. An antispam appliance is capable of evaluating IP addresses that are included in the email messages from the sender. The appliance can also examine the message content and then compare it against the criteria and parameters that have been set for receiving email messages.\r\n<span style=\"font-weight: bold;\">Advantages of an Antispam Appliance</span>\r\nAntispam appliances are capable of providing more email security to large networks because it is hardware that is specifically designed to handle email security on larger networks. Also, since an antispam appliance is hardware, it is much easier to install and configure on a network, as opposed to software that may require a specific operating system infrastructure. For example, if the organization is running the Linux operating system, this type of system will not support antispam filtering software.\r\nAnother advantage of using an antispam appliance is its ability to protect a large network from codes that are designed to destroy the individual computers on the network. These are malicious codes that can enter the email server and then transmit to the email client via spam. When the individual computers get infected, it slows the productivity of the organization and interrupts the network processes.\r\nAlthough many large networks deploy a vulnerability assessment program that can protect the network against criminals with malicious intent, sometimes vulnerability assessment is not enough to protect the massive amounts of email that enter an email server on a large network. This is why it is important to deploy an antispam appliance to provide added security for your email server and the email clients on the individual computers that are connected to the network.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Antispam_Appliance.png"},{"id":562,"title":"DDoS Protection - Appliance","alias":"ddos-protection-appliance","description":"A denial-of-service attack (DoS attack) is a cyber-attack in which the perpetrator seeks to make a machine or network resource unavailable to its intended users by temporarily or indefinitely disrupting services of a host connected to the Internet. Denial of service is typically accomplished by flooding the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent some or all legitimate requests from being fulfilled.\r\nIn a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim originates from many different sources. This effectively makes it impossible to stop the attack simply by blocking a single source.\r\nA DoS or DDoS attack is analogous to a group of people crowding the entry door of a shop, making it hard for legitimate customers to enter, disrupting trade.\r\nCriminal perpetrators of DoS attacks often target sites or services hosted on high-profile web servers such as banks or credit card payment gateways. Revenge, blackmail and activism can motivate these attacks.\r\nBuying a DDoS mitigation appliance can be highly confusing, especially if you have never done this before. While selecting a DDoS protection solution you must understand the right features and have proper background knowledge. In case of distributed denial of service attacks, the bandwidth or resources of any targeted network is flooded with a large amount of malicious traffic. As a result, the system becomes overloaded and crashes. The legitimate users of the network are denied the service. The mail servers, DNS servers and the servers which host high-profile websites are the main target of DDOS attacks. Customers who use services of any shared network are also affected by these attacks. Therefore, anti-DDOS appliances are now vital.","materialsDescription":"<span style=\"font-weight: bold;\">DDoS mitigation solution</span>\r\nThere are two types of DDoS mitigation appliances. These include software and hardware solutions. Identical functions may be claimed by both forms of DDoS protection.\r\n<ul><li>Firewalls are the most common protection appliance, which can deny protocols, IP addresses or ports. However, they are not enough strong to provide protection from the more complicated DDoS attacks.</li><li>Switches are also effective solutions for preventing DDoS attacks. Most of these switches possess rate limiting capability and ACL. Some switches provide packet inspection, traffic shaping, delayed binding and rate limiting. They can detect the fake traffic through balancing and rate filtering.</li><li>Like switches, routers also have rate limiting and ACL capability. Most routers are capable of moving under DoS attacks.</li><li>Intrusion prevention systems are another option for you when it comes to protection from DDoS attacks. This solution can be effective in several cases of DDoS attacks. It can identify DDoS attacks and stop them because they possess the granularity as well as processing power required for identifying the attacks. Then they work in an automated manner to resolve the situation.</li><li>There are also rate-based intrusion prevention mechanisms, which are capable of analyzing traffic granularity. This system can also monitor the pattern of traffic.</li></ul>\r\nYou must check the connectivity while selecting a DDoS mitigation appliance. Capacity is also an important aspect of a DDoS protection solutions. You must figure out the number of ports, IPs, protocols, hosts, URLs and user agents that can be monitored by the appliance. An effective DDoS mitigation solution must also be properly customizable. Your DDoS mitigation appliance should be such that it can be upgraded according to your requirements. These are some important factors that you need to consider while choosing a DDoS mitigation appliance for your system.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_DDoS_Protection_Appliance.png"},{"id":784,"title":"NGFW - next-generation firewall - Appliance","alias":"ngfw-next-generation-firewall-appliance","description":" A next-generation firewall (NGFW) is a part of the third generation of firewall technology, combining a traditional firewall with other network device filtering functionalities, such as an application firewall using in-line deep packet inspection (DPI), an intrusion prevention system (IPS). Other techniques might also be employed, such as TLS/SSL encrypted traffic inspection, website filtering, QoS/bandwidth management, antivirus inspection and third-party identity management integration (i.e. LDAP, RADIUS, Active Directory).\r\nNGFWs include the typical functions of traditional firewalls such as packet filtering, network- and port-address translation (NAT), stateful inspection, and virtual private network (VPN) support. The goal of next-generation firewalls is to include more layers of the OSI model, improving filtering of network traffic that is dependent on the packet contents.\r\nNGFWs perform deeper inspection compared to stateful inspection performed by the first- and second-generation firewalls. NGFWs use a more thorough inspection style, checking packet payloads and matching signatures for harmful activities such as exploitable attacks and malware.\r\nImproved detection of encrypted applications and intrusion prevention service. Modern threats like web-based malware attacks, targeted attacks, application-layer attacks, and more have had a significantly negative effect on the threat landscape. In fact, more than 80% of all new malware and intrusion attempts are exploiting weaknesses in applications, as opposed to weaknesses in networking components and services.\r\nStateful firewalls with simple packet filtering capabilities were efficient blocking unwanted applications as most applications met the port-protocol expectations. Administrators could promptly prevent an unsafe application from being accessed by users by blocking the associated ports and protocols. But today, blocking a web application like Farmville that uses port 80 by closing the port would also mean complications with the entire HTTP protocol.\r\nProtection based on ports, protocols, IP addresses is no more reliable and viable. This has led to the development of identity-based security approach, which takes organizations a step ahead of conventional security appliances which bind security to IP-addresses.\r\nNGFWs offer administrators a deeper awareness of and control over individual applications, along with deeper inspection capabilities by the firewall. Administrators can create very granular "allow/deny" rules for controlling use of websites and applications in the network. ","materialsDescription":"<span style=\"font-weight: bold;\"> What is a next-generation firewall (NGFW)?</span>\r\nAn NGFW contains all the normal defences that a traditional firewall has as well as a type of intrusion prevention software and application control, alongside other bonus security features. NGFWs are also capable of deep packet inspection which enables more robust filters.\r\nIntrusion prevention software monitors network activity to detect and stop vulnerability exploits from occurring. This is usually done by monitoring for breaches against the network policies in place as a breach is usually indicative of malicious activity.\r\nApplication control software simply sets up a hard filter for programs that are trying to send or receive data over the Internet. This can either be done by blacklist (programs in the filter are blocked) or by whitelist (programs not in the filter are blocked).","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_NGFW.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4621,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Redhawk_Network_Security__LLC.png","logo":true,"scheme":false,"title":"RedHawk Managed SIEM","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"redhawk-managed-siem","companyTitle":"Redhawk Network Security, LLC","companyTypes":["supplier","vendor"],"companyId":7009,"companyAlias":"redhawk-network-security-llc","description":"A staggering 27 percent of IT professionals receive more than one million threat alerts daily, according to a recent survey by Imperva. \r\nWith malware multiplying, an increase in phishing schemes, and cyber criminals taking organizations hostage, the need to be watchful and vigilant is more important than ever. \r\nA technology such as Security Information and Event Management (SIEM) can help you monitor your intrusion points 24x7x365 and combat cyberthreats.But the problem most organizations face is implementing, managing, and monitoring yet another technology. \r\nThey find the process of managing a SIEM daunting, much like trying to find a needle in a haystack. That’s where Redhawk fits in. A correctly-tuned SIEM can help find the needle and also reduce the number of resources required to manage your security program. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">For resource-constrained companies, Redhawk’s Managed SIEM Solution provides maximum security benefits with minimal associated costs.</span></span>\r\nIncreasingly sophisticated threats and changing attack methods now require a different approach. \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Redhawk Network Security provides a dynamic Managed SIEM Solution, powered by AlienVault®, to meet your needs. Thee can help you implement a SIEM solution and manage it every step of the way, including the “tuning” period, where we tune the SIEM alerting to your specific environment. </span></span>\r\nThink of SIEM as keeping a watchful eye on all of your data points, looking for suspicious activity, with quick visibility and fast response times so that you are flagged right away. \r\nBy monitoring your network traffic and threat points, a SIEM can aggregate all of your logs into one source to detect and flag any type of compromise or suspicious activity, such as malware or multiple failed logins.\r\nRedhawk Network Security have the expertise and capabilities to provide the advanced security services you require to stay secure and minimize risks to your organization and the information you manage.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Fully-managed, end-to-end SIEM solution, including the initial set-up, and tuning to your environment to ensure reliable and accurate security monitoring:</span></span>\r\n<ul><li>Redhawk installs and set ups the SIEM solution and tune it to your specific environment.</li><li>Team continually tune the service, answering every alarm, making adjustments along the way. </li><li>24x7x365 Monitoring and Incident Response.</li><li>Threat mitigation and remediation expertise. </li><li>Periodic reports on your schedule in the format you choose</li><li>You have access to up-to-date threat intelligence with access to the AlienVault® Open Threat Exchange® (OTX)</li><li>This is certified compliant with PCI DSS, HIPAA, and SOC 2</li><li>Threat detection across all environments: AWS, Azure, on-premises, and cloud applications such as Office 365 and G Suite</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\">All of the Security Essentials in One Platform</span></p>\r\nRedhawk can help you eliminate the complexity and costs of managing multiple, disparate points with a unified platform that delivers all the security essentials required for effective threat detection, incident response, and compliance management. \r\nThis includes:\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Asset Discovery</span></span>\r\nVisibility into who and what is connected to the network at all times \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Vulnerability Assessment</span></span>\r\nAutomated asset scanning to identify vulnerabilities and exposure\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Intrusion Detection</span></span>\r\nCentralized threat detection across all environments\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Behavioral Monitoring</span></span>\r\nIdentification of suspicious behavior and network anomalies \r\n<span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">SIEM and Log Management</span></span>\r\nCorrelation and analysis of security event data from across the network \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Compliance Management</span></span>\r\nContinuous monitoring, compliant log storage, and built-in reporting \r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Intelligence</span></span>\r\nReal-time, validated intelligence on the latest threats and attack methods<br /><br />","shortDescription":"A dynamic Managed SIEM Solution, powered by AlienVault to meet your needs. ","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":10,"sellingCount":11,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"RedHawk Managed SIEM","keywords":"","description":"A staggering 27 percent of IT professionals receive more than one million threat alerts daily, according to a recent survey by Imperva. \r\nWith malware multiplying, an increase in phishing schemes, and cyber criminals taking organizations hostage, the need to b","og:title":"RedHawk Managed SIEM","og:description":"A staggering 27 percent of IT professionals receive more than one million threat alerts daily, according to a recent survey by Imperva. \r\nWith malware multiplying, an increase in phishing schemes, and cyber criminals taking organizations hostage, the need to b","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Redhawk_Network_Security__LLC.png"},"eventUrl":"","translationId":4622,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":34,"title":"ITSM - IT Service Management","alias":"itsm-it-service-management","description":"<span style=\"font-weight: bold; \">IT service management (ITSM)</span> is the process of designing, delivering, managing, and improving the IT services an organization provides to its end users. ITSM is focused on aligning IT processes and services with business objectives to help an organization grow.\r\nITSM positions IT services as the key means of delivering and obtaining value, where an internal or external IT service provider works with business customers, at the same time taking responsibility for the associated costs and risks. ITSM works across the whole lifecycle of a service, from the original strategy, through design, transition and into live operation.\r\nTo ensure sustainable quality of IT services, ITSM establishes a set of practices, or processes, constituting a service management system. There are industrial, national and international standards for IT service management solutions, setting up requirements and good practices for the management system. \r\nITSM system is based on a set of principles, such as focusing on value and continual improvement. It is not just a set of processes – it is a cultural mindset to ensure that the desired outcome for the business is achieved. \r\n<span style=\"font-weight: bold; \">ITIL (IT Infrastructure Library)</span> is a framework of best practices and recommendations for managing an organization's IT operations and services. IT service management processes, when built based on the ITIL framework, pave the way for better IT service operations management and improved business. To summarize, ITIL is a set of guidelines for effective IT service management best practices. ITIL has evolved beyond the delivery of services to providing end-to-end value delivery. The focus is now on the co-creation of value through service relationships. \r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">ITSM processes typically include five stages, all based on the ITIL framework:</span></p>\r\n<span style=\"font-weight: bold; \">ITSM strategy.</span> This stage forms the foundation or the framework of an organization's ITSM process building. It involves defining the services that the organization will offer, strategically planning processes, and recognizing and developing the required assets to keep processes moving. \r\n<span style=\"font-weight: bold; \">Service design.</span> This stage's main aim is planning and designing the IT services the organization offers to meet business demands. It involves creating and designing new services as well as assessing current services and making relevant improvements.\r\n<span style=\"font-weight: bold; \">Service transition.</span> Once the designs for IT services and their processes have been finalized, it's important to build them and test them out to ensure that processes flow. IT teams need to ensure that the designs don't disrupt services in any way, especially when existing IT service processes are upgraded or redesigned. This calls for change management, evaluation, and risk management. \r\n<span style=\"font-weight: bold; \">Service operation. </span>This phase involves implementing the tried and tested new or modified designs in a live environment. While in this stage, the processes have already been tested and the issues fixed, but new processes are bound to have hiccups—especially when customers start using the services. \r\n<span style=\"font-weight: bold;\">Continual service improvement (CSI).</span> Implementing IT processes successfully shouldn't be the final stage in any organization. There's always room for improvement and new development based on issues that pop up, customer needs and demands, and user feedback.\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Benefits of efficient ITSM processes</h1>\r\nIrrespective of the size of business, every organization is involved in IT service management in some way. ITSM ensures that incidents, service requests, problems, changes, and IT assets—in addition to other aspects of IT services—are managed in a streamlined way.\r\nIT teams in your organization can employ various workflows and best practices in ITSM, as outlined in ITIL. Effective IT service management can have positive effects on an IT organization's overall function.\r\nHere are the 10 key benefits of ITSM:\r\n<ul><li> Lower costs for IT operations</li><li> Higher returns on IT investments</li><li> Minimal service outages</li><li> Ability to establish well-defined, repeatable, and manageable IT processes</li><li> Efficient analysis of IT problems to reduce repeat incidents</li><li> Improved efficiency of IT help desk teams</li><li> Well-defined roles and responsibilities</li><li> Clear expectations on service levels and service availability</li><li> Risk-free implementation of IT changes</li><li> Better transparency into IT processes and services</li></ul>\r\n<h1 class=\"align-center\">How to choose an ITSM tool?</h1>\r\nWith a competent IT service management goal in mind, it's important to invest in a service desk solution that caters to your business needs. It goes without saying, with more than 150 service desk tools to choose from, selecting the right one is easier said than done. Here are a few things to keep in mind when choosing an ITSM products:\r\n<span style=\"font-weight: bold; \">Identify key processes and their dependencies. </span>Based on business goals, decide which key ITSM processes need to be implemented and chart out the integrations that need to be established to achieve those goals. \r\n<span style=\"font-weight: bold; \">Consult with ITSM experts.</span> Participate in business expos, webinars, demos, etc., and educate yourself about the various options that are available in the market. Reports from expert analysts such as Gartner and Forrester are particularly useful as they include reviews of almost every solution, ranked based on multiple criteria.\r\n<span style=\"font-weight: bold; \">Choose a deployment option.</span> Every business has a different IT infrastructure model. Selecting an on-premises or software as a service (SaaS IT service management) tool depends on whether your business prefers to host its applications and data on its own servers or use a public or private cloud.\r\n<span style=\"font-weight: bold; \">Plan ahead for the future.</span> Although it's important to consider the "needs" primarily, you shouldn't rule out the secondary or luxury capabilities. If the ITSM tool doesn't have the potential to adapt to your needs as your organization grows, it can pull you back from progressing. Draw a clear picture of where your business is headed and choose an service ITSM that is flexible and technology-driven.\r\n<span style=\"font-weight: bold;\">Don't stop with the capabilities of the ITSM tool.</span> It might be tempting to assess an ITSM tool based on its capabilities and features but it's important to evaluate the vendor of the tool. A good IT support team, and a vendor that is endorsed for their customer-vendor relationship can take your IT services far. Check Gartner's magic quadrant and other analyst reports, along with product and support reviews to ensure that the said tool provides good customer support.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_ITSM.png"},{"id":45,"title":"SIEM - Security Information and Event Management","alias":"siem-security-information-and-event-management","description":"<span style=\"font-weight: bold; \">Security information and event management (SIEM)</span> is an approach to security management that combines SIM (security information management) and SEM (security event management) functions into one security management system. \r\n The underlying principles of every SIEM system is to aggregate relevant data from multiple sources, identify deviations from the norm and take appropriate action. At the most basic level, a SIEM system can be rules-based or employ a statistical correlation engine to establish relationships between event log entries. Advanced SIEM products have evolved to include user and entity behavior analytics (UEBA) and security orchestration and automated response (SOAR). \r\nThe acronyms SEM, SIM and SIEM have sometimes been used interchangeably, but generally refer to the different primary focus of products:\r\n<ul><li><span style=\"font-weight: bold;\">Log management:</span> Focus on simple collection and storage of log messages and audit trails.</li><li><span style=\"font-weight: bold;\">Security information management (SIM):</span> Long-term storage as well as analysis and reporting of log data.</li><li><span style=\"font-weight: bold;\">Security event manager (SEM):</span> Real-time monitoring, correlation of events, notifications and console views.</li><li><span style=\"font-weight: bold;\">Security information event management (SIEM):</span> Combines SIM and SEM and provides real-time analysis of security alerts generated by network hardware and applications.</li><li><span style=\"font-weight: bold;\">Managed Security Service (MSS) or Managed Security Service Provider (MSSP):</span> The most common managed services appear to evolve around connectivity and bandwidth, network monitoring, security, virtualization, and disaster recovery.</li><li><span style=\"font-weight: bold;\">Security as a service (SECaaS):</span> These security services often include authentication, anti-virus, anti-malware/spyware, intrusion detection, Penetration testing and security event management, among others.</li></ul>\r\nToday, most of SIEM technology works by deploying multiple collection agents in a hierarchical manner to gather security-related events from end-user devices, servers, network equipment, as well as specialized security equipment like firewalls, antivirus or intrusion prevention systems. The collectors forward events to a centralized management console where security analysts sift through the noise, connecting the dots and prioritizing security incidents.\r\nSome of the most important features to review when evaluating Security Information and Event Management software are:\r\n<ol><li><span style=\"font-weight: bold; \">Integration with other controls:</span> Can the system give commands to other enterprise security controls to prevent or stop attacks in progress?</li><li><span style=\"font-weight: bold; \">Artificial intelligence:</span> Can the system improve its own accuracy by through machine and deep learning?</li><li><span style=\"font-weight: bold; \">Threat intelligence feeds:</span> Can the system support threat intelligence feeds of the organization's choosing or is it mandated to use a particular feed?</li><li><span style=\"font-weight: bold; \">Robust compliance reporting:</span> Does the system include built-in reports for common compliance needs and the provide the organization with the ability to customize or create new compliance reports?</li><li><span style=\"font-weight: bold; \">Forensics capabilities:</span> Can the system capture additional information about security events by recording the headers and contents of packets of interest? </li></ol>\r\n\r\n\r\n","materialsDescription":"<h1 class=\"align-center\"> Why is SIEM Important?</h1>\r\nSIEM has become a core security component of modern organizations. The main reason is that every user or tracker leaves behind a virtual trail in a network’s log data. SIEM software is designed to use this log data in order to generate insight into past attacks and events. A SIEM solution not only identifies that an attack has happened, but allows you to see how and why it happened as well.\r\nAs organizations update and upscale to increasingly complex IT infrastructures, SIEM has become even more important in recent years. Contrary to popular belief, firewalls and antivirus packages are not enough to protect a network in its entirety. Zero-day attacks can still penetrate a system’s defenses even with these security measures in place.\r\nSIEM addresses this problem by detecting attack activity and assessing it against past behavior on the network. A security event monitoring has the ability to distinguish between legitimate use and a malicious attack. This helps to increase a system’s incident protection and avoid damage to systems and virtual property.\r\nThe use of SIEM also helps companies to comply with a variety of industry cyber management regulations. Log management is the industry standard method of auditing activity on an IT network. SIEM management provides the best way to meet this regulatory requirement and provide transparency over logs in order to generate clear insights and improvements.\r\n<h1 class=\"align-center\">Evaluation criteria for security information and event management software:</h1>\r\n<ul><li>Threat identification: Raw log form vs. descriptive.</li><li>Threat tracking: Ability to track through the various events, from source to destination.</li><li>Policy enforcement: Ability to enforce defined polices.</li><li>Application analysis: Ability to analyze application at Layer 7 if necessary.</li><li>Business relevance of events: Ability to assign business risk to events and have weighted threat levels.</li><li>Measuring changes and improvements: Ability to track configuration changes to devices.</li><li>Asset-based information: Ability to gather information on devices on the network.</li><li>Anomalous behavior (server): Ability to trend and see changes in how it communicates to others.</li><li>Anomalous behavior (network): Ability to trend and see how communications pass throughout the network.</li><li>Anomalous behavior (application): Ability to trend and see changes in how it communicates to others.</li><li>User monitoring: User activity, logging in, applications usage, etc.</li></ul>\r\n\r\n","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SIEM.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":399,"title":"Requirements Visualization, Definition, and Management","alias":"requirements-visualization-definition-and-management","description":" Requirements management is the process of documenting, analyzing, tracing, prioritizing and agreeing on requirements and then controlling change and communicating to relevant stakeholders. It is a continuous process throughout a project. A requirement is a capability to which a project outcome (product or service) should conform.\r\nThe purpose of requirements management is to ensure that an organization documents, verifies, and meets the needs and expectations of its customers and internal or external stakeholders. Requirements management begins with the analysis and elicitation of the objectives and constraints of the organization. Requirements management further includes supporting planning for requirements, integrating requirements and the organization for working with them (attributes for requirements), as well as relationships with other information delivering against requirements, and changes for these.\r\nThe traceability thus established is used in managing requirements to report back fulfilment of company and stakeholder interests in terms of compliance, completeness, coverage, and consistency. Traceabilities also support change management as part of requirements management in understanding the impacts of changes through requirements or other related elements (e.g., functional impacts through relations to functional architecture), and facilitating introducing these changes.\r\nRequirements management involves communication between the project team members and stakeholders, and adjustment to requirements changes throughout the course of the project. To prevent one class of requirements from overriding another, constant communication among members of the development team is critical. For example, in software development for internal applications, the business has such strong needs that it may ignore user requirements, or believe that in creating use cases, the user requirements are being taken care of.\r\nRequirements traceability is concerned with documenting the life of a requirement. It should be possible to trace back to the origin of each requirement and every change made to the requirement should therefore be documented in order to achieve traceability. Even the use of the requirement after the implemented features have been deployed and used should be traceable.\r\nRequirements come from different sources, like the business person ordering the product, the marketing manager and the actual user. These people all have different requirements for the product. Using requirements traceability, an implemented feature can be traced back to the person or group that wanted it during the requirements elicitation. This can, for example, be used during the development process to prioritize the requirement, determining how valuable the requirement is to a specific user. It can also be used after the deployment when user studies show that a feature is not used, to see why it was required in the first place.","materialsDescription":"<span style=\"font-weight: bold; \">Requirements activities</span>\r\nAt each stage in a development process, there are key requirements management activities and methods. To illustrate, consider a standard five-phase development process with Investigation, Feasibility, Design, Construction, and Test, and Release stages.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Investigation</span></span>\r\nIn Investigation, the first three classes of requirements are gathered from the users, from the business, and from the development team. In each area, similar questions are asked; what are the goals, what are the constraints, what are the current tools or processes in place, and so on. Only when these requirements are well understood can functional requirements be developed.\r\nIn the common case, requirements cannot be fully defined at the beginning of the project. Some requirements will change, either because they simply weren’t extracted, or because internal or external forces at work affect the project in mid-cycle.\r\nThe deliverable from the Investigation stage is a requirements document that has been approved by all members of the team. Later, in the thick of development, this document will be critical in preventing scope creep or unnecessary changes. As the system develops, each new feature opens a world of new possibilities, so the requirements specification anchors the team to the original vision and permits a controlled discussion of scope change.\r\nWhile many organizations still use only documents to manage requirements, others manage their requirements baselines using software tools. These tools allow requirements to be managed in a database, and usually have functions to automate traceability (e.g., by allowing electronic links to be created between parent and child requirements, or between test cases and requirements), electronic baseline creation, version control, and change management. Usually, such tools contain an export function that allows a specification document to be created by exporting the requirements data into a standard document application.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Feasibility</span></span>\r\nIn the Feasibility stage, the costs of the requirements are determined. For user requirements, the current cost of work is compared to the future projected costs once the new system is in place. Questions such as these are asked: “What are data entry errors costing us now?” Or “What is the cost of scrap due to operator error with the current interface?” Actually, the need for the new tool is often recognized as these questions come to the attention of financial people in the organization.\r\nBusiness costs would include, “What department has the budget for this?” “What is the expected rate of return on the new product in the marketplace?” “What’s the internal rate of return in reducing the costs of training and support if we make a new, easier-to-use system?”\r\nTechnical costs are related to software development costs and hardware costs. “Do we have the right people to create the tool?” “Do we need new equipment to support expanded software roles?” This last question is an important type. The team must inquire into whether the newest automated tools will add sufficient processing power to shift some of the burdens from the user to the system in order to save people time.\r\nThe question also points out a fundamental point about requirements management. A human and a tool form a system, and this realization is especially important if the tool is a computer or a new application on a computer. The human mind excels in parallel processing and interpretation of trends with insufficient data. The CPU excels in serial processing and accurate mathematical computation. The overarching goal of the requirements management effort for a software project would thus be to make sure the work being automated gets assigned to the proper processor. For instance, “Don’t make the human remember where she is in the interface. Make the interface report the human’s location in the system at all times.” Or “Don’t make the human enter the same data in two screens. Make the system store the data and fill in the second screen as needed.”\r\nThe deliverable from the Feasibility stage is the budget and schedule for the project.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Design</span></span>\r\nAssuming that costs are accurately determined and benefits to be gained are sufficiently large, the project can proceed to the Design stage. In Design, the main requirements management activity is comparing the results of the design against the requirements document to make sure that work is staying in scope.\r\nAgain, flexibility is paramount to success. Here’s a classic story of scope change in mid-stream that actually worked well. Ford auto designers in the early ‘80s were expecting gasoline prices to hit $3.18 per gallon by the end of the decade. Midway through the design of the Ford Taurus, prices had centered to around $1.50 a gallon. The design team decided they could build a larger, more comfortable, and more powerful car if the gas prices stayed low, so they redesigned the car. The Taurus launch set nationwide sales records when the new car came out, primarily because it was so roomy and comfortable to drive.\r\nIn most cases, however, departing from the original requirements to that degree does not work. So the requirements document becomes a critical tool that helps the team make decisions about design changes.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Construction and test</span></span>\r\nIn the construction and testing stage, the main activity of requirements management is to make sure that work and cost stay within schedule and budget, and that the emerging tool does, in fact, meet requirements. A main tool used in this stage is prototype construction and iterative testing. For a software application, the user interface can be created on paper and tested with potential users while the framework of the software is being built. The results of these tests are recorded in a user interface design guide and handed off to the design team when they are ready to develop the interface. This saves time and makes their jobs much easier.\r\nVerification: This effort verifies that the requirement has been implemented correctly. There are 4 methods of verification: analysis, inspection, testing, and demonstration. Numerical software execution results or through-put on a network test, for example, provides analytical evidence that the requirement has been met. Inspection of vendor documentation or spec sheets also verifies requirements. Actually testing or demonstrating the software in a lab environment also verifies the requirements: a test type of verification will occur when test equipment not normally part of the lab (or system under test) is used. Comprehensive test procedures which outline the steps and their expected results clearly identify what is to be seen as a result of performing the step. After the step or set of steps is completed the last step's expected result will call out what has been seen and then identify what requirements or requirements have been verified (identified by number). The requirement number, title, and verbiage are tied together in another location in the test document.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Requirements change management</span></span>\r\nHardly would any software development project be completed without some changes being asked of the project. The changes can stem from changes in the environment in which the finished product is envisaged to be used, business changes, regulation changes, errors in the original definition of requirements, limitations in technology, changes in the security environment and so on. The activities of requirements change management include receiving the change requests from the stakeholders, recording the received change requests, analyzing and determining the desirability and process of implementation, implementation of the change request, quality assurance for the implementation and closing the change request. Then the data of change requests be compiled, analyzed and appropriate metrics are derived and dovetailed into the organizational knowledge repository.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Release</span></span>\r\nRequirements management does not end with product release. From that point on, the data coming in about the application’s acceptability is gathered and fed into the Investigation phase of the next generation or release. Thus the process begins again.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Requirements_Visualization.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":836,"title":"DRP - Digital Risk Protection","alias":"drp-digital-risk-protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4623,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/galvanize_logo.png","logo":true,"scheme":false,"title":"Highbond Platform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"highbond-platform","companyTitle":"Galvanize","companyTypes":["supplier","vendor"],"companyId":7010,"companyAlias":"galvanize","description":"<p class=\"align-center\">CONNECTING GOVERNANCE, RISK, & COMPLIANCE (GRC) PROFESSIONALS WITH THE ANSWERS THAT DRIVE CHANGE—SO THEY CAN PROTECT THE ORGANIZATION AND INCREASE ITS CAPACITY TO MEET STRATEGIC OBJECTIVES.</p>\r\nTake spreadsheets, manual processes, and collaboration struggles out of your team’s day and get back to focusing on high-value activities that help your organization achieve its goals. HighBond centralizes your activities in a purpose-built dashboard, and aggregates your data for real-time decision making and reporting.\r\n<p class=\"align-center\"><span style=\"font-weight: bold;\"><span style=\"font-style: italic;\">Why choose HighBond?</span></span></p>\r\n<span style=\"font-weight: bold;\">STRATEGIC RISK VIEW & SINGLE SOURCE OF TRUTH</span>\r\nExecutives, boards, and oversight committees need intel on what could derail objectives and potential mitigation efforts. Regulators also frown on risk being managed in spreadsheets. HighBond gives you a centrally managed, holistic view of your risk balance-sheet. \r\n<span style=\"font-weight: bold;\">NO MORE SILOS & SPREADSHEETS</span>\r\nLet dedicated technology do your heavy lifting. Plan, manage, execute, and report on your assurance projects in one system.\r\n<span style=\"font-weight: bold;\">TRIGGERED WORKFLOW REMEDIATION FOR FLAGGED RECORDS</span>\r\nGet notified as soon as data analysis uncovers a potential issue. HighBond triggers remediation workflows to help you collaborate, keep tabs on remediation status, and track all efforts in a single system.\r\n<span style=\"font-weight: bold;\">ISSUE MANAGEMENT & TRACKING</span><br />Stop tracking issues over email and instead get a macro view of all your organizational issues, filtered by entity, project, owner, or severity—and check the remediation status with the click of a button.\r\n<span style=\"font-weight: bold;\">OFFLINE & REMOTE WORK</span>\r\nOut in the field/away from the office? No problem. Unplug your PC or tablet, do your work, capture supporting documentation, and sync it all later.\r\n<span style=\"font-weight: bold;\">RISK ASSURANCE & FRAMEWORKS</span><br />Let the system keep you on track by modeling one or many common frameworks like COSO, ISO, SOX, OMB A-123, Green Book, COBIT, ITIL, SIEM, NIST, SOC, and many others.\r\n<span style=\"font-weight: bold;\">INVESTIGATIONS & FORENSIC WORKFLOWS</span><br />Security incidents, possible fraud, whistle-blower hotlines, special investigations, and forensics may all require escalations and workflow alerts. Manage these in a centralized, permissions-based workflow.\r\n<span style=\"font-weight: bold;\">REPORTING & VISUALIZATION</span><br />Senior managers just don’t have time to read the details. Your value is taking GRC complexity and distilling it into a compelling picture, story, dashboard, KPI/KRI, standard or custom report, which can be quickly understood and acted on\r\n<span style=\"font-weight: bold;\">PUBLIC SECTOR WORKFLOW</span><br />Plan, execute, and report on projects to protect expenditures of services and benefits with a workflow that eases your resource-strapped environment.\r\n<span style=\"font-weight: bold;\">UNCOVER MISSING RISKS</span><br />Excel analytics are incapable of uncovering 80% of the risks that matter. Assessing people responses is equally important to assessing entire data sets, and comprehensively integrating people, processes, and data reveals hidden strategic risks.\r\n<span style=\"font-weight: bold;\">SECURE, CLOUD-BASED SAAS</span><br />Enterprise-hosted environments suffer higher incident rates. While your IT’s expertise is running your business, our cloud infrastructure host’s expertise is stringent security. Free up your IT, better protect your data—and empower your users with continuous delivery of always up-to-date value-driving tools.\r\n<span style=\"font-weight: bold;\">TOOLS & RESOURCES</span><br />Your subscription includes online training, a global community of other Galvanize users and experts, a library of pre-built risk analysis scripts, a rich knowledge base, an inspirations platform of ideas, and complete user guides.<br /><br />","shortDescription":"Governance software for strong risk management.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":16,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Highbond Platform","keywords":"","description":"<p class=\"align-center\">CONNECTING GOVERNANCE, RISK, & COMPLIANCE (GRC) PROFESSIONALS WITH THE ANSWERS THAT DRIVE CHANGE—SO THEY CAN PROTECT THE ORGANIZATION AND INCREASE ITS CAPACITY TO MEET STRATEGIC OBJECTIVES.</p>\r\nTake spreadsheets, manual processes, ","og:title":"Highbond Platform","og:description":"<p class=\"align-center\">CONNECTING GOVERNANCE, RISK, & COMPLIANCE (GRC) PROFESSIONALS WITH THE ANSWERS THAT DRIVE CHANGE—SO THEY CAN PROTECT THE ORGANIZATION AND INCREASE ITS CAPACITY TO MEET STRATEGIC OBJECTIVES.</p>\r\nTake spreadsheets, manual processes, ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/galvanize_logo.png"},"eventUrl":"","translationId":4624,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":52,"title":"SaaS - software as a service","alias":"saas-software-as-a-service","description":"<span style=\"font-weight: bold;\">Software as a service (SaaS)</span> is a software licensing and delivery model in which software is licensed on a subscription basis and is centrally hosted. It is sometimes referred to as "on-demand software", and was formerly referred to as "software plus services" by Microsoft.\r\n SaaS services is typically accessed by users using a thin client, e.g. via a web browser. SaaS software solutions has become a common delivery model for many business applications, including office software, messaging software, payroll processing software, DBMS software, management software, CAD software, development software, gamification, virtualization, accounting, collaboration, customer relationship management (CRM), Management Information Systems (MIS), enterprise resource planning (ERP), invoicing, human resource management (HRM), talent acquisition, learning management systems, content management (CM), Geographic Information Systems (GIS), and service desk management. SaaS has been incorporated into the strategy of nearly all leading enterprise software companies.\r\nSaaS applications are also known as <span style=\"font-weight: bold;\">Web-based software</span>, <span style=\"font-weight: bold;\">on-demand software</span> and<span style=\"font-weight: bold;\"> hosted software</span>.\r\nThe term "Software as a Service" (SaaS) is considered to be part of the nomenclature of cloud computing, along with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Desktop as a Service (DaaS),managed software as a service (MSaaS), mobile backend as a service (MBaaS), and information technology management as a service (ITMaaS).\r\nBecause SaaS is based on cloud computing it saves organizations from installing and running applications on their own systems. That eliminates or at least reduces the associated costs of hardware purchases and maintenance and of software and support. The initial setup cost for a SaaS application is also generally lower than it for equivalent enterprise software purchased via a site license.\r\nSometimes, the use of SaaS cloud software can also reduce the long-term costs of software licensing, though that depends on the pricing model for the individual SaaS offering and the enterprise’s usage patterns. In fact, it’s possible for SaaS to cost more than traditional software licenses. This is an area IT organizations should explore carefully.<br />SaaS also provides enterprises the flexibility inherent with cloud services: they can subscribe to a SaaS offering as needed rather than having to buy software licenses and install the software on a variety of computers. The savings can be substantial in the case of applications that require new hardware purchases to support the software.<br /><br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Who uses SaaS?</span></h1>\r\nIndustry analyst Forrester Research notes that SaaS adoption has so far been concentrated mostly in human resource management (HRM), customer relationship management (CRM), collaboration software (e.g., email), and procurement solutions, but is poised to widen. Today it’s possible to have a data warehouse in the cloud that you can access with business intelligence software running as a service and connect to your cloud-based ERP like NetSuite or Microsoft Dynamics.The dollar savings can run into the millions. And SaaS installations are often installed and working in a fraction of the time of on-premises deployments—some can be ready in hours. \r\nSales and marketing people are likely familiar with Salesforce.com, the leading SaaS CRM software, with millions of users across more than 100,000 customers. Sales is going SaaS too, with apps available to support sales in order management, compensation, quote production and configure, price, quoting, electronic signatures, contract management and more.\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal;\">Why SaaS? Benefits of software as a service</span></h1>\r\n<ul><li><span style=\"font-weight: bold;\">Lower cost of entry</span>. With SaaS solution, you pay for what you need, without having to buy hardware to host your new applications. Instead of provisioning internal resources to install the software, the vendor provides APIs and performs much of the work to get their software working for you. The time to a working solution can drop from months in the traditional model to weeks, days or hours with the SaaS model. In some businesses, IT wants nothing to do with installing and running a sales app. In the case of funding software and its implementation, this can be a make-or-break issue for the sales and marketing budget, so the lower cost really makes the difference.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Reduced time to benefit/rapid prototyping</span>. In the SaaS model, the software application is already installed and configured. Users can provision the server for the cloud and quickly have the application ready for use. This cuts the time to benefit and allows for rapid demonstrations and prototyping. With many SaaS companies offering free trials, this means a painless proof of concept and discovery phase to prove the benefit to the organization. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Pay as you go</span>. SaaS business software gives you the benefit of predictable costs both for the subscription and to some extent, the administration. Even as you scale, you can have a clear idea of what your costs will be. This allows for much more accurate budgeting, especially as compared to the costs of internal IT to manage upgrades and address issues for an owned instance.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">The SaaS vendor is responsible for upgrades, uptime and security</span>. Under the SaaS model, since the software is hosted by the vendor, they take on the responsibility for maintaining the software and upgrading it, ensuring that it is reliable and meeting agreed-upon service level agreements, and keeping the application and its data secure. While some IT people worry about Software as a Service security outside of the enterprise walls, the likely truth is that the vendor has a much higher level of security than the enterprise itself would provide. Many will have redundant instances in very secure data centers in multiple geographies. Also, the data is being automatically backed up by the vendor, providing additional security and peace of mind. Because of the data center hosting, you’re getting the added benefit of at least some disaster recovery. Lastly, the vendor manages these issues as part of their core competencies—let them.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Integration and scalability.</span> Most SaaS apps are designed to support some amount of customization for the way you do business. SaaS vendors create APIs to allow connections not only to internal applications like ERPs or CRMs but also to other SaaS providers. One of the terrific aspects of integration is that orders written in the field can be automatically sent to the ERP. Now a salesperson in the field can check inventory through the catalog, write the order in front of the customer for approval, send it and receive confirmation, all in minutes. And as you scale with a SaaS vendor, there’s no need to invest in server capacity and software licenses. </li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold;\">Work anywhere</span>. Since the software is hosted in the cloud and accessible over the internet, users can access it via mobile devices wherever they are connected. This includes checking customer order histories prior to a sales call, as well as having access to real time data and real time order taking with the customer.</li></ul>\r\n<p class=\"align-left\"> </p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SaaS__1_.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":79,"title":"VM - Vulnerability management","alias":"vm-vulnerability-management","description":"Vulnerability management is the "cyclical practice of identifying, classifying, prioritizing, remediating and mitigating" software vulnerabilities. Vulnerability management is integral to computer security and network security, and must not be confused with a Vulnerability assessment.\r\nVulnerability management is an ongoing process that includes proactive asset discovery, continuous monitoring, mitigation, remediation and defense tactics to protect your organization's modern IT attack surface from Cyber Exposure.\r\nVulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configurations, and susceptibility to malware infections. They may also be identified by consulting public sources, such as NVD, or subscribing to a commercial vulnerability alerting services. Unknown vulnerabilities, such as a zero-day, may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow with relevant test cases. Such analysis can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file).\r\nCorrecting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software, or educating users about social engineering.\r\nNetwork vulnerabilities represent security gaps that could be abused by attackers to damage network assets, trigger a denial of service, and/or steal potentially sensitive information. Attackers are constantly looking for new vulnerabilities to exploit — and taking advantage of old vulnerabilities that may have gone unpatched.\r\nHaving a vulnerability management framework in place that regularly checks for new vulnerabilities is crucial for preventing cybersecurity breaches. Without a vulnerability testing and patch management system, old security gaps may be left on the network for extended periods of time. This gives attackers more of an opportunity to exploit vulnerabilities and carry out their attacks.\r\nOne statistic that highlights how crucial vulnerability management was featured in an Infosecurity Magazine article. According to survey data cited in the article, of the organizations that “suffered a breach, almost 60% were due to an unpatched vulnerability.” In other words, nearly 60% of the data breaches suffered by survey respondents could have been easily prevented simply by having a vulnerability management plan that would apply critical patches before attackers leveraged the vulnerability.","materialsDescription":" <span style=\"font-weight: bold;\">What is vulnerability management?</span>\r\nVulnerability management is a pro-active approach to managing network security by reducing the likelihood that flaws in code or design compromise the security of an endpoint or network.\r\n<span style=\"font-weight: bold;\">What processes does vulnerability management include?</span>\r\nVulnerability management processes include:\r\n<ul><li><span style=\"font-style: italic;\">Checking for vulnerabilities:</span> This process should include regular network scanning, firewall logging, penetration testing or use of an automated tool like a vulnerability scanner.</li><li><span style=\"font-style: italic;\">Identifying vulnerabilities:</span> This involves analyzing network scans and pen test results, firewall logs or vulnerability scan results to find anomalies that suggest a malware attack or other malicious event has taken advantage of a security vulnerability, or could possibly do so.</li><li><span style=\"font-style: italic;\">Verifying vulnerabilities:</span> This process includes ascertaining whether the identified vulnerabilities could actually be exploited on servers, applications, networks or other systems. This also includes classifying the severity of a vulnerability and the level of risk it presents to the organization.</li><li><span style=\"font-style: italic;\">Mitigating vulnerabilities:</span> This is the process of figuring out how to prevent vulnerabilities from being exploited before a patch is available, or in the event that there is no patch. It can involve taking the affected part of the system off-line (if it's non-critical), or various other workarounds.</li><li><span style=\"font-style: italic;\">Patching vulnerabilities:</span> This is the process of getting patches -- usually from the vendors of the affected software or hardware -- and applying them to all the affected areas in a timely way. This is sometimes an automated process, done with patch management tools. This step also includes patch testing.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/VM_-_Vulnerability_management1.png"},{"id":204,"title":"Managed Detection and Response","alias":"managed-detection-and-response","description":" MDR, which stands for Managed Detection & Response, is an all-encompassing threat detection system, which arose from the need for small/medium-sized organizations who lack resources to be able to monitor their network systems in-house. It provides a cost-effective alternative to SIEM (Security Information and Event Management).\r\nEveryday, the capabilities of attackers get more sophisticated and the volume of alerts becomes overwhelming and unmanageable. In-house teams might struggle to analyze and log data, which makes it harder than ever to determine if these threats are harmful. MDR can put a stop to attacks before they even happen. MDR technology monitors your systems and detects any unusual behavior, whilst our expert team responds to the threats detected within your business.\r\nMDR offers real-time threat intelligence, and is able to analyse behaviour which can be missed by traditional endpoint security technology. MDR also provides rapid identification of known threats, which in turn minimises overall attacks. Having remote incident investigation will minimise damage to your business, and will allow you to get back to work in no time. It’s important to note that using MDR services will allow third party access to your company's data. You need to consider working with a provider who understands and respects your data policy.","materialsDescription":" <span style=\"font-weight: bold;\">What is Managed Detection and Response?</span>\r\nManaged Detection and Response (MDR) is a managed cybersecurity service that provides intrusion detection of malware and malicious activity in your network, and assists in rapid incident response to eliminate those threats with succinct remediation actions. MDR typically combines a technology solution with outsourced security analysts that extend your technologies and team.\r\n<span style=\"font-weight: bold;\">Isn’t that What MSSPs or Managed SIEMs Do?</span>\r\nNo. Managed Security Service Providers (MSSPs) monitor network security controls and may send alerts when anomalies are identified. MSSPs typically do not investigate the anomalies to eliminate false positives, nor do they respond to real threats. This means that abnormalities in network usage are forwarded to your IT personnel who must then dig through the data to determine if there is a real threat and what to do about it.\r\n<span style=\"font-weight: bold;\">Doesn’t My Firewall Protect My Network?</span>\r\nFirewalls and other preventive forms of cybersecurity are very important and effective at preventing basic cyberattacks. However, over the past decade, it has become clear that preventive cybersecurity technologies are not enough to secure an organization’s network. Further, they are yet another source of alerts, log messages, and events that contribute to the “alert fatigue” being universally suffered today. Recent major hacks such as the Marriot Hack of 2018, the Anthem Hack of 2015, and the Target Hack of 2013 demonstrate how easily cybercriminals can breach networks at enterprise organizations to steal millions of credit card numbers, medical records, and other forms of PII/PHI.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/Endpoint_Detection_and_Response.png"},{"id":399,"title":"Requirements Visualization, Definition, and Management","alias":"requirements-visualization-definition-and-management","description":" Requirements management is the process of documenting, analyzing, tracing, prioritizing and agreeing on requirements and then controlling change and communicating to relevant stakeholders. It is a continuous process throughout a project. A requirement is a capability to which a project outcome (product or service) should conform.\r\nThe purpose of requirements management is to ensure that an organization documents, verifies, and meets the needs and expectations of its customers and internal or external stakeholders. Requirements management begins with the analysis and elicitation of the objectives and constraints of the organization. Requirements management further includes supporting planning for requirements, integrating requirements and the organization for working with them (attributes for requirements), as well as relationships with other information delivering against requirements, and changes for these.\r\nThe traceability thus established is used in managing requirements to report back fulfilment of company and stakeholder interests in terms of compliance, completeness, coverage, and consistency. Traceabilities also support change management as part of requirements management in understanding the impacts of changes through requirements or other related elements (e.g., functional impacts through relations to functional architecture), and facilitating introducing these changes.\r\nRequirements management involves communication between the project team members and stakeholders, and adjustment to requirements changes throughout the course of the project. To prevent one class of requirements from overriding another, constant communication among members of the development team is critical. For example, in software development for internal applications, the business has such strong needs that it may ignore user requirements, or believe that in creating use cases, the user requirements are being taken care of.\r\nRequirements traceability is concerned with documenting the life of a requirement. It should be possible to trace back to the origin of each requirement and every change made to the requirement should therefore be documented in order to achieve traceability. Even the use of the requirement after the implemented features have been deployed and used should be traceable.\r\nRequirements come from different sources, like the business person ordering the product, the marketing manager and the actual user. These people all have different requirements for the product. Using requirements traceability, an implemented feature can be traced back to the person or group that wanted it during the requirements elicitation. This can, for example, be used during the development process to prioritize the requirement, determining how valuable the requirement is to a specific user. It can also be used after the deployment when user studies show that a feature is not used, to see why it was required in the first place.","materialsDescription":"<span style=\"font-weight: bold; \">Requirements activities</span>\r\nAt each stage in a development process, there are key requirements management activities and methods. To illustrate, consider a standard five-phase development process with Investigation, Feasibility, Design, Construction, and Test, and Release stages.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Investigation</span></span>\r\nIn Investigation, the first three classes of requirements are gathered from the users, from the business, and from the development team. In each area, similar questions are asked; what are the goals, what are the constraints, what are the current tools or processes in place, and so on. Only when these requirements are well understood can functional requirements be developed.\r\nIn the common case, requirements cannot be fully defined at the beginning of the project. Some requirements will change, either because they simply weren’t extracted, or because internal or external forces at work affect the project in mid-cycle.\r\nThe deliverable from the Investigation stage is a requirements document that has been approved by all members of the team. Later, in the thick of development, this document will be critical in preventing scope creep or unnecessary changes. As the system develops, each new feature opens a world of new possibilities, so the requirements specification anchors the team to the original vision and permits a controlled discussion of scope change.\r\nWhile many organizations still use only documents to manage requirements, others manage their requirements baselines using software tools. These tools allow requirements to be managed in a database, and usually have functions to automate traceability (e.g., by allowing electronic links to be created between parent and child requirements, or between test cases and requirements), electronic baseline creation, version control, and change management. Usually, such tools contain an export function that allows a specification document to be created by exporting the requirements data into a standard document application.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Feasibility</span></span>\r\nIn the Feasibility stage, the costs of the requirements are determined. For user requirements, the current cost of work is compared to the future projected costs once the new system is in place. Questions such as these are asked: “What are data entry errors costing us now?” Or “What is the cost of scrap due to operator error with the current interface?” Actually, the need for the new tool is often recognized as these questions come to the attention of financial people in the organization.\r\nBusiness costs would include, “What department has the budget for this?” “What is the expected rate of return on the new product in the marketplace?” “What’s the internal rate of return in reducing the costs of training and support if we make a new, easier-to-use system?”\r\nTechnical costs are related to software development costs and hardware costs. “Do we have the right people to create the tool?” “Do we need new equipment to support expanded software roles?” This last question is an important type. The team must inquire into whether the newest automated tools will add sufficient processing power to shift some of the burdens from the user to the system in order to save people time.\r\nThe question also points out a fundamental point about requirements management. A human and a tool form a system, and this realization is especially important if the tool is a computer or a new application on a computer. The human mind excels in parallel processing and interpretation of trends with insufficient data. The CPU excels in serial processing and accurate mathematical computation. The overarching goal of the requirements management effort for a software project would thus be to make sure the work being automated gets assigned to the proper processor. For instance, “Don’t make the human remember where she is in the interface. Make the interface report the human’s location in the system at all times.” Or “Don’t make the human enter the same data in two screens. Make the system store the data and fill in the second screen as needed.”\r\nThe deliverable from the Feasibility stage is the budget and schedule for the project.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Design</span></span>\r\nAssuming that costs are accurately determined and benefits to be gained are sufficiently large, the project can proceed to the Design stage. In Design, the main requirements management activity is comparing the results of the design against the requirements document to make sure that work is staying in scope.\r\nAgain, flexibility is paramount to success. Here’s a classic story of scope change in mid-stream that actually worked well. Ford auto designers in the early ‘80s were expecting gasoline prices to hit $3.18 per gallon by the end of the decade. Midway through the design of the Ford Taurus, prices had centered to around $1.50 a gallon. The design team decided they could build a larger, more comfortable, and more powerful car if the gas prices stayed low, so they redesigned the car. The Taurus launch set nationwide sales records when the new car came out, primarily because it was so roomy and comfortable to drive.\r\nIn most cases, however, departing from the original requirements to that degree does not work. So the requirements document becomes a critical tool that helps the team make decisions about design changes.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Construction and test</span></span>\r\nIn the construction and testing stage, the main activity of requirements management is to make sure that work and cost stay within schedule and budget, and that the emerging tool does, in fact, meet requirements. A main tool used in this stage is prototype construction and iterative testing. For a software application, the user interface can be created on paper and tested with potential users while the framework of the software is being built. The results of these tests are recorded in a user interface design guide and handed off to the design team when they are ready to develop the interface. This saves time and makes their jobs much easier.\r\nVerification: This effort verifies that the requirement has been implemented correctly. There are 4 methods of verification: analysis, inspection, testing, and demonstration. Numerical software execution results or through-put on a network test, for example, provides analytical evidence that the requirement has been met. Inspection of vendor documentation or spec sheets also verifies requirements. Actually testing or demonstrating the software in a lab environment also verifies the requirements: a test type of verification will occur when test equipment not normally part of the lab (or system under test) is used. Comprehensive test procedures which outline the steps and their expected results clearly identify what is to be seen as a result of performing the step. After the step or set of steps is completed the last step's expected result will call out what has been seen and then identify what requirements or requirements have been verified (identified by number). The requirement number, title, and verbiage are tied together in another location in the test document.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Requirements change management</span></span>\r\nHardly would any software development project be completed without some changes being asked of the project. The changes can stem from changes in the environment in which the finished product is envisaged to be used, business changes, regulation changes, errors in the original definition of requirements, limitations in technology, changes in the security environment and so on. The activities of requirements change management include receiving the change requests from the stakeholders, recording the received change requests, analyzing and determining the desirability and process of implementation, implementation of the change request, quality assurance for the implementation and closing the change request. Then the data of change requests be compiled, analyzed and appropriate metrics are derived and dovetailed into the organizational knowledge repository.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Release</span></span>\r\nRequirements management does not end with product release. From that point on, the data coming in about the application’s acceptability is gathered and fed into the Investigation phase of the next generation or release. Thus the process begins again.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Requirements_Visualization.png"},{"id":467,"title":"Network Forensics","alias":"network-forensics","description":" Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection. Unlike other areas of digital forensics, network investigations deal with volatile and dynamic information. Network traffic is transmitted and then lost, so network forensics is often a pro-active investigation.\r\nNetwork forensics generally has two uses. The first, relating to security, involves monitoring a network for anomalous traffic and identifying intrusions. An attacker might be able to erase all log files on a compromised host; network-based evidence might therefore be the only evidence available for forensic analysis. The second form relates to law enforcement. In this case analysis of captured network traffic can include tasks such as reassembling transferred files, searching for keywords and parsing human communication such as emails or chat sessions.\r\nTwo systems are commonly used to collect network data; a brute force "catch it as you can" and a more intelligent "stop look listen" method.\r\nNetwork forensics is a comparatively new field of forensic science. The growing popularity of the Internet in homes means that computing has become network-centric and data is now available outside of disk-based digital evidence. Network forensics can be performed as a standalone investigation or alongside a computer forensics analysis (where it is often used to reveal links between digital devices or reconstruct how a crime was committed).\r\nMarcus Ranum is credited with defining Network forensics as "the capture, recording, and analysis of network events in order to discover the source of security attacks or other problem incidents".\r\nCompared to computer forensics, where evidence is usually preserved on disk, network data is more volatile and unpredictable. Investigators often only have material to examine if packet filters, firewalls, and intrusion detection systems were set up to anticipate breaches of security.\r\nSystems used to collect network data for forensics use usually come in two forms:\r\n<ul><li>"Catch-it-as-you-can" – This is where all packets passing through a certain traffic point are captured and written to storage with analysis being done subsequently in batch mode. This approach requires large amounts of storage.</li><li>"Stop, look and listen" – This is where each packet is analyzed in a rudimentary way in memory and only certain information saved for future analysis. This approach requires a faster processor to keep up with incoming traffic.</li></ul>","materialsDescription":" <span style=\"font-weight: bold;\">Why is network forensics important?</span>\r\nNetwork forensics is important because so many common attacks entail some type of misuse of network resources.\r\n<span style=\"font-weight: bold;\">What are the different ways in which the network can be attacked?</span>\r\nAttacks typically target availability confidentiality and integrity. Loss of any one of these items constitutes a security breach.\r\n<span style=\"font-weight: bold;\">Where is the best place to search for information?</span>\r\nInformation can be found by either doing a live analysis of the network, analyzing IDS information, or examining logs that can be found in routers and servers.\r\n<span style=\"font-weight: bold;\">How does a forensic analyst know how deeply to look for information?</span>\r\nSome amount of information can be derived from looking at the skill level of the attacker. Attackers with little skill are much less likely to use advanced hiding techniques.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Network_Forensics.png"},{"id":836,"title":"DRP - Digital Risk Protection","alias":"drp-digital-risk-protection","description":"Digital risks exist on social media and web channels, outside most organization's line of visibility. Organizations struggle to monitor these external, unregulated channels for risks targeting their business, their employees or their customers.\r\nCategories of risk include cyber (insider threat, phishing, malware, data loss), revenue (customer scams, piracy, counterfeit goods) brand (impersonations, slander) and physical (physical threats, natural disasters).\r\nDue to the explosive growth of digital risks, organizations need a flexible, automated approach that can monitor digital channels for organization-specific risks, trigger alerts and remediate malicious posts, profiles, content or apps.\r\nDigital risk protection (DRP) is the process of protecting social media and digital channels from security threats and business risks such as social engineering, external fraud, data loss, insider threat and reputation-based attacks. DRP reduces risks that emerge from digital transformation, protecting against the unwanted exposure of a company’s data, brand, and attack surface and providing actionable insight on threats from the open, deep, and dark web.<br /><br />","materialsDescription":"<span style=\"font-weight: bold;\">What is a digital risk?</span>\r\nDigital risks can take many forms. Most fundamentally, what makes a risk digital? Digital risk is any risk that plays out in one form or another online, outside of an organization’s IT infrastructure and beyond the security perimeter. This can be a cyber risk, like a phishing link or ransomware via LinkedIn, but can also include traditional risks with a digital component, such as credit card money flipping scams on Instagram.\r\n<span style=\"font-weight: bold;\">What are the features of Digital Risk Protection?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">The features are:</span></span>\r\n<ul><li>Protecting yourself from digital risk by building a watchtower, not a wall. A new Forrester report identifies two objectives for any digital risk protection effort: identifying risks and resolving them.</li><li>Digital risk comes in many forms, like unauthorized data disclosure, threat coordination from cybercriminals, risks inherent in the technology you use and in your third-party associates and even from your own employees.</li><li>The best solutions should automate the collection of data and draw from many sources; should have the capabilities to map, monitor, and mitigate digital risk and should be flexible enough to be applied in multiple use cases — factors that many threat intelligence solutions excel in.</li></ul>\r\n<span style=\"font-weight: bold;\">What elements constitute a digital risk?</span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Unauthorized Data Disclosure</span></span>\r\nThis includes the theft or leakage of any kind of sensitive data, like the personal financial information of a retail organization’s customers or the source code for a technology company’s proprietary products.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Threat Coordination Activity</span></span>\r\nMarketplaces and criminal forums on the dark web or even just on the open web are potent sources of risk. Here, a vulnerability identified by one group or individual who can’t act on it can reach the hands of someone who can. This includes the distribution of exploits in both targeted and untargeted campaigns.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supply Chain Issues</span></span>\r\nBusiness partners, third-party suppliers, and other vendors who interact directly with your organization but are not necessarily following the same security practices can open the door to increased risk.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Employee Risk</span></span>\r\nEven the most secure and unbreakable lock can still easily be opened if you just have the right key. Through social engineering efforts, identity or access management and manipulation, or malicious insider attacks coming from disgruntled employees, even the most robust cybersecurity program can be quickly subverted.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Technology Risks</span></span>\r\nThis broad category includes all of the risks you must consider across the different technologies your organization might rely on to get your work done, keep it running smoothly, and tell people about it.\r\n<ul><li><span style=\"font-weight: bold;\">Physical Infrastructure:</span> Countless industrial processes are now partly or completely automated, relying on SCADA, DCS, or PLC systems to run smoothly — and opening them up to cyber- attacks (like the STUXNET attack that derailed an entire country’s nuclear program).</li><li><span style=\"font-weight: bold;\">IT Infrastructure:</span> Maybe the most commonsensical source of digital risk, this includes all of the potential vulnerabilities in your software and hardware. The proliferation of the internet of things devices poses a growing and sometimes underappreciated risk here.</li><li><span style=\"font-weight: bold;\">Public-Facing Presence:</span> All of the points where you interact with your customers and other public entities, whether through social media, email campaigns, or other marketing strategies, represent potential sources of risk.</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Digital_Risk_Protection.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4880,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/MSI_Mission_Secure_Logo.jpg","logo":true,"scheme":false,"title":"MSi Platform","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"msi-platform","companyTitle":"MSi Mission Secure","companyTypes":["vendor"],"companyId":7395,"companyAlias":"msi-mission-secure","description":"Unique in an emerging market, the patented MSi Platform 4.0 is a software-hardware ICS cybersecurity solution purpose-built for the operational technology (OT) environment. With the MSi Platform, companies gain comprehensive network visibility, asset discovery, network mapping, segmentation and controller protection, plus Level 0 visibility and protection on a single platform. On-premise or hosted in the MSi cloud, with 24/7/365 monitoring, the MSi Platform 4.0 makes OT cybersecurity simple, even for the non-IT professional.\r\nThe patented MSi Platform—comprised of the MSi Console, MSi IDS, MSi 1 and MSi Sentinel—takes plant, ship, production platform and control system security to an unparalleled level with six points of action and awareness.\r\n<span style=\"font-weight: bold;\">PROTECT</span>\r\nRestrict unauthorized access and block malware and ransomware from reaching important controllers and Level 1 devices.\r\n<span style=\"font-weight: bold;\">MONITOR</span>\r\nContinuously monitor network IP levels, alongside digital and analog signals with our secure, multi-layered system.\r\n<span style=\"font-weight: bold;\">DETECT</span>\r\nGet real-time analysis and automated incident detection.\r\n<span style=\"font-weight: bold;\">INFORM</span>\r\nKeep trusted operators and cybersecurity professionals informed through dedicated communications systems.\r\n<span style=\"font-weight: bold;\">COLLECT</span>\r\nGather system data from digital and analog sensors and actuators, controllers and the OT network for real-time analysis and post-attack forensic purposes.\r\n<span style=\"font-weight: bold;\">CORRECT</span>\r\nCarry out optional automated or operator-guided responses, control system restorations to enable safe operating states and continued production.","shortDescription":"MSi Platform is cybersecurity for industrial control systems.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":11,"sellingCount":13,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"MSi Platform","keywords":"","description":"Unique in an emerging market, the patented MSi Platform 4.0 is a software-hardware ICS cybersecurity solution purpose-built for the operational technology (OT) environment. With the MSi Platform, companies gain comprehensive network visibility, asset discovery","og:title":"MSi Platform","og:description":"Unique in an emerging market, the patented MSi Platform 4.0 is a software-hardware ICS cybersecurity solution purpose-built for the operational technology (OT) environment. With the MSi Platform, companies gain comprehensive network visibility, asset discovery","og:image":"https://old.roi4cio.com/fileadmin/user_upload/MSI_Mission_Secure_Logo.jpg"},"eventUrl":"","translationId":4881,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":178,"title":"IoT - Internet of Things","alias":"iot-internet-of-things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"},{"id":840,"title":"ICS/SCADA Cyber Security","alias":"icsscada-cyber-security","description":"SCADA security is the practice of protecting supervisory control and data acquisition (SCADA) networks, a common framework of control systems used in industrial operations. These networks are responsible for providing automated control and remote human management of essential commodities and services such as water, natural gas, electricity and transportation to millions of people. They can also be used to improve the efficiencies and quality in other less essential (but some would say very important!) real-world processes such as snowmaking for ski resorts and beer brewing. SCADA is one of the most common types of industrial control systems (ICS).\r\nThese networks, just like any other network, are under threat from cyber-attacks that could bring down any part of the nation's critical infrastructure quickly and with dire consequences if the right security is not in place. Capital expenditure is another key concern; SCADA systems can cost an organization from tens of thousands to millions of dollars. For these reasons, it is essential that organizations implement robust SCADA security measures to protect their infrastructure and the millions of people that would be affected by the disruption caused by an external attack or internal error.\r\nSCADA security has evolved dramatically in recent years. Before computers, the only way to monitor a SCADA network was to deploy several people to each station to report back on the state of each system. In busier stations, technicians were stationed permanently to manually operate the network and communicate over telephone wires.\r\nIt wasn't until the introduction of the local area network (LAN) and improvements in system miniaturization that we started to see advances in SCADA development such as the distributed SCADA network. Next came networked systems that were able to communicate over a wide area network (WAN) and connect many more components together.\r\nFrom local companies to federal governments, every business or organization that works with SCADA systems are vulnerable to SCADA security threats. These threats can have wide-reaching effects on both the economy and the community. Specific threats to SCADA networks include the following:\r\n<span style=\"font-weight: bold;\">Hackers.</span> Individuals or groups with malicious intent could bring a SCADA network to its knees. By gaining access to key SCADA components, hackers could unleash chaos on an organization that can range from a disruption in services to cyber warfare.\r\n<span style=\"font-weight: bold;\">Malware.</span> Malware, including viruses, spyware and ransomware can pose a risk to SCADA systems. While malware may not be able to specifically target the network itself, it can still pose a threat to the key infrastructure that helps to manage the SCADA network. This includes mobile SCADA applications that are used to monitor and manage SCADA systems.\r\n<span style=\"font-weight: bold;\">Terrorists.</span> Where hackers are usually motivated by sordid gain, terrorists are driven by the desire to cause as much mayhem and damage as possible.\r\n<span style=\"font-weight: bold;\">Employees.</span> Insider threats can be just as damaging as external threats. From human error to a disgruntled employee or contractor, it is essential that SCADA security addresses these risks.\r\nManaging today's SCADA networks can be a challenge without the right security precautions in place. Many networks are still without the necessary detection and monitoring systems and this leaves them vulnerable to attack. Because SCADA network attacks exploit both cyber and physical vulnerabilities, it is critical to align cybersecurity measures accordingly.","materialsDescription":"<span style=\"font-weight: bold;\">What is the difference between ICS/SCADA cybersecurity and information security?</span>\r\nAutomated process control systems (SCADA) have a lot of differences from “traditional” corporate information systems: from the destination, specific data transfer protocols and equipment used and ending with the environment in which they operate. In corporate networks and systems, as a rule, the main protected resource is information that is processed, transmitted and stored in automated systems, and the main goal is to ensure its confidentiality. In ICS, the protected resource, first of all, is the technological process itself, and the main goal is to ensure its continuity (accessibility of all nodes) and integrity (including information transmitted between the nodes of the ICS). Moreover, the field of potential risks and threats to ICS, in comparison with corporate systems, expands with risks of potential damage to life and health of personnel and the public, damage to the environment and infrastructure. That is why it is incorrect to talk about “information security” in relation to ICS/SCADA. In English sources, the term “cybersecurity” is used for this, a direct translation of which (cybersecurity) is increasingly found in our market in relation to the protection of process control systems.\r\n<span style=\"font-weight: bold;\">Is it really necessary?</span>\r\nIt is necessary. There are a number of myths about process control systems, for example: “process control systems are completely isolated from the outside world”, “process control systems are too specific for someone to crack”, “process control systems are reliably protected by the developer”, or even “No one will ever try us, hacking us is not interesting. ” All this is no longer true. Many modern distributed process control systems have one or another connection with the corporate network, even if the system owners are unaware of this. Communication with the outside world greatly simplifies the task of the attacker, but does not remain the only possible option. Automated process control software and data transfer protocols are, as a rule, very, very insecure against cyber threats. This is evidenced by numerous articles and reports of experts involved in the study of the protection of industrial control systems and penetration tests. The PHDays III section on hacking automated process control systems impressed even ardent skeptics. Well, and, of course, the argument “they have NOT attacked us, therefore they will not” - can hardly be considered seriously. Everyone has heard about Stuxnet, which dispelled almost all the myths about the safety of ICS at once.\r\n<span style=\"font-weight: bold;\">Who needs this?</span>\r\nWith the phrase ICS/SCADA, most imagine huge plants, automated CNC machines or something similar. However, the application of process control systems is not limited to these objects - in the modern age of automation, process control systems are used everywhere: from large production facilities, the oil and gas industry, transport management to smart home systems. And, by the way, with the protection of the latter, as a rule, everything can be much worse, because the developer silently and imperceptibly shifts responsibility to the shoulders of the user.\r\nOf course, some of the objects with automated process control systems are more interesting for attackers, others less. But, given the ever-growing number of vulnerabilities discovered and published in the ICS, the spread of "exclusive" (written for specific protocols and ICS software) malware, considering your system safe "by default" is unreasonable.\r\n<span style=\"font-weight: bold;\">Are ICS and SCADA the same thing?</span>\r\nNo. SCADA systems (supervisory control and data acquisition, supervisory control and data collection) are part of the control system. Usually, a SCADA system means centralized control and management systems with the participation of a person as a whole system or a complex of industrial control systems. SCADA is the central link between people (human-machine interfaces) and PLC levels (programmable logic controller) or RTU (remote terminal unit).\r\n<span style=\"font-weight: bold;\">What is ICS/SCADA cybersecurity?</span>\r\nIn fact, ICS cybersecurity is a process similar to “information security” in a number of properties, but very different in details. And the devil, as you know, lies in them. ICS/SCADA also has similar information security-related processes: asset inventory, risk analysis and assessment, threat analysis, security management, change management, incident response, continuity, etc. But these processes themselves are different.<br />The cyber security of ICSs has the same basic target qualities - confidentiality, integrity and accessibility, but the significance and point of application for them are completely different. It should be remembered that in ICS/SCADA we, first of all, protect the technological process. Beyond this - from the risks of damage to human health and life and the environment.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_SCADA_Cyber_Security.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":5648,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/pa_220r.png","logo":true,"scheme":false,"title":"Palo Alto PA-220R","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":5,"alias":"palo-alto-pa-220r","companyTitle":"Palo Alto Networks","companyTypes":["vendor"],"companyId":2061,"companyAlias":"palo-alto-networks","description":"The PA-220R is a ruggedized next-generation Firewall that secures industrial and defense networks in a range of harsh environments, such as utility substations, power plants, manufacturing plants, oil and gas facilities, building management systems, and healthcare networks.\r\n<b>Features:</b>\r\n<ul> <li>Classifies all applications, on all ports, all the time </li> <li>Enforces security policies for any user, at any location</li> <li>Prevents known and unknown threats </li> <li>Enables SD-WAN functionality </li> </ul>\r\n<b>Highlights:</b>\r\n<ul> <li>Extended operating range for temperature</li> <li>Certified to IEC 61850-3 and IEEE 1613 environmental and testing standards for vibration, temperature, and immunity to electromagnetic interference</li> <li>Dual DC power (12–48V)</li> <li>High availability firewall configuration (active/active and active/passive)</li> <li>Fanless design with no moving parts</li> <li>Flexible I/O with support for both copper and optical via SFP ports</li> <li>Flexible mounting options, including DIN rail, rack, and wall mount</li> <li>Simplified remote site deployment via USB-based bootstrapping</li> </ul>","shortDescription":"Prevent threats in harsh environments\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":18,"sellingCount":19,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Palo Alto PA-220R","keywords":"","description":"The PA-220R is a ruggedized next-generation Firewall that secures industrial and defense networks in a range of harsh environments, such as utility substations, power plants, manufacturing plants, oil and gas facilities, building management systems, and health","og:title":"Palo Alto PA-220R","og:description":"The PA-220R is a ruggedized next-generation Firewall that secures industrial and defense networks in a range of harsh environments, such as utility substations, power plants, manufacturing plants, oil and gas facilities, building management systems, and health","og:image":"https://old.roi4cio.com/fileadmin/user_upload/pa_220r.png"},"eventUrl":"","translationId":5647,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3348,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/_xdair-300.png","logo":true,"scheme":false,"title":"Tresys XD Air","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"tresys-xd-air","companyTitle":"Tresys","companyTypes":["supplier","vendor"],"companyId":5159,"companyAlias":"tresys","description":" XD Air is an integrated hardware/software package that inspects and cleans files on portable media of malware and other malicious content. A laptop-based kiosk, XD Air was developed in conjunction with the National Security Agency as a file sanitization tool to enable the safe use of portable media. In the six years since its development, more than 1,000 XD Air systems have been successfully deployed in government, nuclear, and commercial environments.<br /><br /><span style=\"font-weight: bold;\">Application Flexibility</span>\r\nProven in a variety of government and critical infrastructure applications, XD Air:\r\n<ul><li>Protects against media-borne and data-borne threats when transferring data to secure or critical networks.</li></ul>\r\n<ul><li>Enables assured transfer of classified data between high-risk networks using portable media (meets the requirements of JTF-GNO CTO-10-004A for Removable Flash Media Device Implementation).</li></ul>\r\n<ul><li>Assists in publishing digital documents by exposing hidden content and verifying cleansing before release—helping ensure that classified or confidential data is not inadvertently disseminated.</li></ul>\r\n<ul><li>Verifies the authenticity of content from trusted sources.</li></ul>\r\n<br /><span style=\"font-weight: bold;\">How It Works</span>\r\n\r\n<ul><li>Inspects and cleans files on removable media to mitigate the risk of introducing malicious content</li></ul>\r\n<ul><li>Offers three methods of protection: Known Good, Known Bad and Known Source</li></ul>\r\n<ul><li>Applies advanced filtering techniques to perform deep content inspection of complex file types, exposing hidden threats and data missed by conventional antivirus and anti-malware protection</li></ul>\r\n<ul><li>XD Air is hardened against attacks from media-borne malware</li></ul>\r\n<ul><li>Securely erases media</li></ul>","shortDescription":"XD Air™ is the only U.S. Cyber Command-approved tool for the transfer of classified data using portable media.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":14,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Tresys XD Air","keywords":"","description":" XD Air is an integrated hardware/software package that inspects and cleans files on portable media of malware and other malicious content. A laptop-based kiosk, XD Air was developed in conjunction with the National Security Agency as a file sanitization ","og:title":"Tresys XD Air","og:description":" XD Air is an integrated hardware/software package that inspects and cleans files on portable media of malware and other malicious content. A laptop-based kiosk, XD Air was developed in conjunction with the National Security Agency as a file sanitization ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/_xdair-300.png"},"eventUrl":"","translationId":3349,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":560,"title":"IPC - Information Protection and Control - Appliance","alias":"ipc-information-protection-and-control-appliance","description":" Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC class hardware solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information.\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":" <span style=\"font-weight: bold;\">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC apparel solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold;\">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold;\">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_IPC_Information_Protection_and_Control_Appliance.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3350,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/VIT-400-0000.jpg","logo":true,"scheme":false,"title":"WizLAN VIT-400 Cyber Network Security","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"wizlan-vit-400-cyber-network-security","companyTitle":"WizLAN","companyTypes":["supplier","vendor"],"companyId":5241,"companyAlias":"wizlan","description":"The VIT-400 is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode, desigen and approved for Critical Infrastructure Protection (CIP) connectivity.<br /><br />Composed of a pair of single-direction network diodes (VIT-42TX/RX like), internally connected by a single fiber optic cable and having two separated power supplies, the VIT-400 provides complet protection, isolation and security for unidirectional transparent data transfer between two networks.<br /><br />Separating between the pure HW network to network diode and the unidirectional VectorIT SW application, installed on the networks endpoint servers, assures unbreakable single-direction solution for protecting the networks against intrusion and leakage.<br /><br />VectorIT software application facilitates unidirectional transfer of certain TCP-based protocols as well as raw files over standard Ethernet interfaces with utilization of up-to full wire speed. <br />Currently supported protocols are FTP, SMTP TCP and raw files. The software is dedicated to and employs only unidirectional data flow over single or bidirectional link, but has otherwise no relation to data security services.<br /><br />The VIT-400 includes a uniqe link verification function in which the link of the incoming endpoint (receiving server) will drop if there is any problem with the end to end link continuity up-to the outgoing endpopint (transmitting server). This is a powerfull HW management feature aspecially for single direction applications.","shortDescription":"WizLAN VIT-400 Cyber Network Security is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":20,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"WizLAN VIT-400 Cyber Network Security","keywords":"","description":"The VIT-400 is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode, desigen and approved for Critical Infrastructure Protection (CIP) connectivity.<br /><br />Composed of a pair of single-direction ","og:title":"WizLAN VIT-400 Cyber Network Security","og:description":"The VIT-400 is a Fast Ethernet single-direction network to network fibeoptic coupled isolation device - Network to Network Diode, desigen and approved for Critical Infrastructure Protection (CIP) connectivity.<br /><br />Composed of a pair of single-direction ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/VIT-400-0000.jpg"},"eventUrl":"","translationId":3351,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":461,"title":"Data Diode","alias":"data-diode","description":"A unidirectional network (also referred to as a unidirectional gateway or data diode) is a network appliance or device that allows data to travel in only one direction. Data diodes can be found most commonly in high-security environments, such as defense, where they serve as connections between two or more networks of differing security classifications. Given the rise of Industrial IoT and Digitization, this technology can now be found at the industrial control level for such facilities as nuclear power plants, power generation and safety-critical systems like railway networks.<br />After years of development, the use of data diodes has increased, creating two variations:\r\n<ul><li>Data Diode: more often used to refer to the simple hardware version that physically enforces data to flow in only one direction.</li><li>Unidirectional Gateway: Used to describe a more sophisticated device that typically has a computer on both its critical and open side. Unidirectional gateways are a combination of hardware and software. The hardware (data diode) permits data to flow from one network to another but is physically unable to send any information at all back into the source network. The software replicates databases and emulates protocol servers and devices, enabling compatibility with existing network protocols, allowing organizations to gain their benefits without changes to their existing systems.</li></ul>\r\nOnce only commonly found in high-security military environments, unidirectional gateways are now becoming widely spread in sectors like Oil & Gas, water/wastewater, airplanes (between flight control units and in-flight entertainment systems), manufacturing and cloud connectivity for Industrial IoT primarily as a result of new regulations, increased demand and big industrial powerhouses. These industries/sectors and betting on this technology, which has had the effect of lowering the technology's core cost.","materialsDescription":"<span style=\"font-weight: bold;\">What Is Data Diode Technology & How Does It Work?</span>\r\nToday's business environment is increasingly digital and more vulnerable than ever to a cyber attack. Because of this, various network security technologies have been developed to protect organizational data and infrastructures. One of the most effective of these modern technologies is the data diode. Although it is one of the most effective network security tools available, you may not have heard of this technology and know little of what it does. Below, you'll find a description of what data diode technology is and how it works.\r\n<span style=\"font-weight: bold;\">What Is Data Diode Technology?</span>\r\nA data diode is a communication device that enables the safe, one-way transfer of data between segmented networks. Intelligent data diode design maintains physical and electrical separation of source and destination networks, establishing a non-routable, completely closed one-way data transfer protocol between networks. Intelligent data diodes effectively eliminate external points of entry to the sending system, preventing intruders and contagious elements from infiltrating the network. Securing all of a network’s data outflow with data diodes makes it impossible for an insecure or hostile network to pass along malware, access your system, or accidentally make harmful changes.\r\nData diodes allow companies to send process data in real time to information management systems for use in financial, customer service, and management decisions — without compromising the security of your network. This protects valuable information and network infrastructure from theft, destruction, tampering, and human error, mitigating the potential loss of thousands of dollars and countless hours of work.\r\n<span style=\"font-weight: bold;\">How Does Data Diode Technology Work?</span>\r\nA "diode" is an electronic component that only allows current to flow in one direction. Similarly, data diode technology lets information flow safely in only one direction, from secure areas to less secure systems, without permitting reverse access. A data diode also creates a physical barrier or “air gap” between the two points. This one-way connection prevents data leakage, eliminates the threat of malware, and fully protects the process control network. Moreover, a single data diode can handle data transfers from multiple servers or devices simultaneously, without bottlenecking.\r\n<span style=\"font-weight: bold;\">Where is it used?</span>\r\nIt’s typically used to guarantee information security or protection of critical digital systems, such as industrial control systems, from cyber attacks. While the use of these devices is common in high-security environments such as defense, where they serve as connections between two or more networks of differing security classifications, the technology is also being used to enforce one-way communications outbound from critical digital systems to untrusted networks connected to the Internet.\r\nThe physical nature of unidirectional networks only allows data to pass from one side of a network connection to another, and not the other way around. This can be from the "low side" or untrusted network to the "high side" or trusted network or vice versa. In the first case, data in the high side network is kept confidential and users retain access to data from the low side. Such functionality can be attractive if sensitive data is stored on a network which requires connectivity with the Internet: the high side can receive Internet data from the low side, but no data on the high side is accessible to Internet-based intrusion. In the second case, a safety-critical physical system can be made accessible for online monitoring, yet be insulated from all Internet-based attacks that might seek to cause physical damage. In both cases, the connection remains unidirectional even if both the low and the high network are compromised, as the security guarantees are physical in nature.\r\nThere are two general models for using unidirectional network connections. In the classical model, the purpose of the data diode is to prevent the export of classified data from a secure machine while allowing the import of data from an insecure machine. In the alternative model, the diode is used to allow export of data from a protected machine while preventing attacks on that machine.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Data_Diode.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":548,"title":"Web security - Appliance","alias":"web-security-appliance","description":"A security appliance is any form of server appliance that is designed to protect computer networks from unwanted traffic. Types of network security appliance:\r\n<span style=\"font-weight: bold;\">Active devices</span> block unwanted traffic. Examples of such devices are firewalls, anti-virus scanning devices, and content filtering devices. For instance, if you want to make sure that you do not get pointless spam and other unnecessary issues, installing an active device might be a great idea. Active devices include anti-virus scanning devices, which will automatically scan throughout the network to ensure that no virus exists within the protected network. Then, there are web filtering appliances as well as firewalls, the purpose of both of which is to ensure that only useful content and traffic flows through the network and all pointless or harmful data is filtered.\r\n<span style=\"font-weight: bold;\">Passive devices detect and report on unwanted traffic.</span> A common example is intrusion detection appliances, which are installed in order to determine whether the network has been compromised in any way. These devices usually work in the background at all times.\r\n<span style=\"font-weight: bold;\">Preventative devices</span> scan networks and identify potential security problems (such as penetration testing and vulnerability assessment appliances). These devices are usually designed to 'prevent' damage to the network by identifying problems in advance. Common examples include devices that employ penetration testing as well as those devices which carry out vulnerability assessment on networks.\r\n<span style=\"font-weight: bold;\">Unified Threat Management (UTM)</span> combines features together into one system, such as some firewalls, content filtering, web caching etc. UTM devices are designed to provide users with a one-stop solution to all of their network needs and internet security appliances. As the name clearly suggests, these devices provide the features of all of the other network devices and condense them into one. These devices are designed to provide a number of different network security options in one package, hence providing networks with a simple solution. Rather than installing four different devices, users can easily install one and be done with it. The market of UTM devices has exceeded the billion dollar mark already, which just goes to show how popular these devices have become amongst network users.\r\nOne of the most popular and accessible types of web security appliance tools is the hardware <span style=\"font-weight: bold;\">keylogger.</span> This device is placed covertly between the case and keyboard with an output for the computer case and input for the keyboard. As hardware standards have changed over time, a USB hardware keylogger provides access on many devices.\r\nThe <span style=\"font-weight: bold;\">web proxy appliance</span> is basically hardware you use to manage user web access. More to the point, it's the type of device that handles the blocking or controlling of suspicious programs. It's typically placed in between network users and the worldwide web; ergo, it's most popular application is serving as a central control hub over employee Internet use by corporations and enterprises. It's the in-between gateway that serves as a termination point of sorts for online communications within a network and is capable of applying a multitude of rule-based limitations on Internet traffic, web content, and requests before they even end up with end users.\r\nAnother commonly used hardware tool is the <span style=\"font-weight: bold;\">wireless antenna.</span> These can be used to surveil a wide variety of wireless communications, including local cellular and internet service networks. More mechanical and general devices may include lockpicks or portable probes and hijack chips for compromising electronic devices through the physical circuit.\r\n<span style=\"font-weight: bold;\">Secure web gateway appliances</span> are solutions to prevent advanced threats, block unauthorized access to systems or websites, stop malware, and monitor real-time activity across websites accessed by users within the institution. Software and cloud-based platforms now perform this function as well.","materialsDescription":"<h1 class=\"align-center\"> What are the top Network Security Appliance brands?</h1>\r\n<span style=\"font-weight: bold;\">Blue Coat Systems,</span> Sunnyvale, Calif.-based Blue Coat has been part of security powerhouse Symantec since 2016.\r\n<span style=\"font-weight: bold;\">F5 Networks,</span> the Seattle-based network application delivery vendor, sold about $17.6 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">SonicWall.</span>Firewall power player SonicWall sold about $23.5 million in network security appliances through the channel in the second quarter, according to NPD.\r\n<span style=\"font-weight: bold;\">Fortinet,</span> Sunnyvale, Calif., security software vendor Fortinet sold about $24.4 million in network security appliances through the channel in the second quarter, NPD said.\r\n<span style=\"font-weight: bold;\">Cisco Systems,</span> Cisco Systems was the quarter's growth champion, posting $77.2 million in network security appliance sales through the channel in the period, beating the previous year’s quarterly total of $62.3 million by about 24 percent, according to NPD.\r\n<span style=\"font-weight: bold;\">Palo Alto Networks.</span> With $94.2 million in network security appliance sales in the quarter, Palo Alto Networks was the best-selling network security appliance brand of the second quarter, according to NPD.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Web_security_Appliance.png"},{"id":560,"title":"IPC - Information Protection and Control - Appliance","alias":"ipc-information-protection-and-control-appliance","description":" Information Protection and Control (IPC) is a technology for protecting confidential information from internal threats. IPC class hardware solutions are designed to protect information from internal threats, prevent various types of information leaks, corporate espionage, and business intelligence. The term IPC combines two main technologies: encryption of storage media at all points of the network and control of technical channels of information leakage using Data Loss Prevention (DLP) technologies. Network, application and data access control is a possible third technology in IPC class systems. IPC includes solutions of the Data Loss Prevention (DLP) class, a system for encrypting corporate information and controlling access to it. The term IPC was one of the first to use IDC analyst Brian Burke in his report, Information Protection and Control Survey: Data Loss Prevention and Encryption Trends.\r\nIPC technology is a logical continuation of DLP technology and allows you to protect data not only from leaks through technical channels, that is, insiders, but also from unauthorized user access to the network, information, applications, and in cases where the direct storage medium falls into the hands of third parties. This allows you to prevent leaks in those cases when an insider or a person who does not have legal access to data gain access to the direct carrier of information.\r\nThe main objective of IPC systems is to prevent the transfer of confidential information outside the corporate information system. Such a transfer (leak) may be intentional or unintentional. Practice shows that most of the leaks (more than 75%) do not occur due to malicious intent, but because of errors, carelessness, carelessness, and negligence of employees - it is much easier to detect such cases. The rest is connected with the malicious intent of operators and users of enterprise information systems, in particular, industrial espionage and competitive intelligence. Obviously, malicious insiders, as a rule, try to trick IPC analyzers and other control systems.","materialsDescription":" <span style=\"font-weight: bold;\">What is Information Protection and Control (IPC)?</span>\r\nIPC (English Information Protection and Control) is a generic name for technology to protect confidential information from internal threats.\r\nIPC apparel solutions are designed to prevent various types of information leaks, corporate espionage, and business intelligence. IPC combines two main technologies: media encryption and control of technical channels of information leakage (Data Loss Prevention - DLP). Also, the functionality of IPC systems may include systems of protection against unauthorized access (unauthorized access).\r\n<span style=\"font-weight: bold;\">What are the objectives of IPC class systems?</span>\r\n<ul><li>preventing the transfer of confidential information beyond the corporate information system;</li><li>prevention of outside transmission of not only confidential but also other undesirable information (offensive expressions, spam, eroticism, excessive amounts of data, etc.);</li><li>preventing the transmission of unwanted information not only from inside to outside but also from outside to inside the organization’s information system;</li><li>preventing employees from using the Internet and network resources for personal purposes;</li><li>spam protection;</li><li>virus protection;</li><li>optimization of channel loading, reduction of inappropriate traffic;</li><li>accounting of working hours and presence at the workplace;</li><li>tracking the reliability of employees, their political views, beliefs, collecting dirt;</li><li>archiving information in case of accidental deletion or damage to the original;</li><li>protection against accidental or intentional violation of internal standards;</li><li>ensuring compliance with standards in the field of information security and current legislation.</li></ul>\r\n<span style=\"font-weight: bold;\">Why is DLP technology used in IPC?</span>\r\nIPC DLP technology supports monitoring of the following technical channels for confidential information leakage:\r\n<ul><li>corporate email;</li><li>webmail;</li><li>social networks and blogs;</li><li>file-sharing networks;</li><li>forums and other Internet resources, including those made using AJAX technology;</li><li>instant messaging tools (ICQ, Mail.Ru Agent, Skype, AOL AIM, Google Talk, Yahoo Messenger, MSN Messenger, etc.);</li><li>P2P clients;</li><li>peripheral devices (USB, LPT, COM, WiFi, Bluetooth, etc.);</li><li>local and network printers.</li></ul>\r\nDLP technologies in IPC support control, including the following communication protocols:\r\n<ul><li>FTP;</li><li>FTP over HTTP;</li><li>FTPS;</li><li>HTTP;</li><li>HTTPS (SSL);</li><li>NNTP;</li><li>POP3;</li><li>SMTP.</li></ul>\r\n<span style=\"font-weight: bold;\">What information protection facilities does IPC technology include?</span>\r\nIPC technology includes the ability to encrypt information at all key points in the network. The objects of information security are:\r\n<ul><li>Server hard drives;</li><li>SAN;</li><li>NAS;</li><li>Magnetic tapes;</li><li>CD/DVD/Blue-ray discs;</li><li>Personal computers (including laptops);</li><li>External devices.</li></ul>\r\nIPC technologies use various plug-in cryptographic modules, including the most efficient algorithms DES, Triple DES, RC5, RC6, AES, XTS-AES. The most used algorithms in IPC solutions are RC5 and AES, the effectiveness of which can be tested on the project [distributed.net]. They are most effective for solving the problems of encrypting data of large amounts of data on server storages and backups.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_IPC_Information_Protection_and_Control_Appliance.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4890,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Netshield.png","logo":true,"scheme":false,"title":"Netshield","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"netshield","companyTitle":"Netshield","companyTypes":["supplier","vendor"],"companyId":5278,"companyAlias":"netshield","description":"Too many small and midsized companies know they have network blind spots, but don’t have enterprise-level budgets for true network asset detection and device-level blocking. At Netshield, we believe small and midsized businesses cannot afford NOT to have this protection. Our solutions are affordable, and we are so good at stopping data breaches that we are the only solution in the market that can write you a $250k cyber insurance policy once deployed.\r\nOver half of small businesses will experience a cyberattack, and over 60% that do will GO UNDER within 6 Months of the attack. Instead of asking if you can afford Netshield, the real question is can you afford NOT to have Netshield.\r\n<span style=\"text-decoration: underline;\"><span style=\"font-weight: bold;\">Key Features</span></span>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Asset Detection & Instantaneous Blocking</span></span>\r\n<ul><li>Plug anywhere, discover everywhere</li><li>Discover All Physical, Virtual, Mobile, IoT assets</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Malware/Phishing Detection and Prevention</span></span>\r\n<ul><li>Monitor egress traffic to discover connection attempts to known malicious servers</li><li>Employ instantaneous blocking</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Auditing & Vulnerability Assessment</span></span>\r\n<ul><li>Identify Common Vulnerabilities and Exposures (CVEs)</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Agentless</span></span>\r\n<ul><li>Easy to Deploy – No need to load agents on endpoints</li><li>Simple to configure</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Non-Inline</span></span>\r\n<ul><li>No performance impact</li><li>Connects the same way as a PC would</li></ul>\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Plays Well With Others</span></span>\r\n<ul><li>Layered network approach</li><li>Hardware and software agnostic</li><li>Smart switch integration to isolate rogue assets</li><li>Third-party integrations</li></ul>","shortDescription":"Netshield stops data breaches. Identify everything. Block the bad things. Get insured.","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":20,"sellingCount":4,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"Netshield","keywords":"","description":"Too many small and midsized companies know they have network blind spots, but don’t have enterprise-level budgets for true network asset detection and device-level blocking. At Netshield, we believe small and midsized businesses cannot afford NOT to have this ","og:title":"Netshield","og:description":"Too many small and midsized companies know they have network blind spots, but don’t have enterprise-level budgets for true network asset detection and device-level blocking. At Netshield, we believe small and midsized businesses cannot afford NOT to have this ","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Netshield.png"},"eventUrl":"","translationId":4891,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":178,"title":"IoT - Internet of Things","alias":"iot-internet-of-things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4904,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/NXP_Semiconductors_IoT_GATEWAY_Solution.png","logo":true,"scheme":false,"title":"NXP Semiconductors IoT Gateway Solution","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"nxp-semiconductors-iot-gateway-solution","companyTitle":"NXP Semiconductors","companyTypes":["supplier"],"companyId":5286,"companyAlias":"nxp-semiconductors","description":"The IoT Gateway Solution aims to accelerate IoT development needs with integrated, comprehensive and fully documented out-of-the-box guidance and support.\r\nIt includes the NXP Modular IoT Gateway and Modular Edge Node, which are tested and verified for ZigBee® and Thread connectivity, as well as secure cloud communications through Wi-Fi, Ethernet, and cellular, enabling access to cloud services.","shortDescription":"A complete development platform that brings together the building blocks for secure, production-ready IoT systems.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":5,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"NXP Semiconductors IoT Gateway Solution","keywords":"","description":"The IoT Gateway Solution aims to accelerate IoT development needs with integrated, comprehensive and fully documented out-of-the-box guidance and support.\r\nIt includes the NXP Modular IoT Gateway and Modular Edge Node, which are tested and verified for ZigBee®","og:title":"NXP Semiconductors IoT Gateway Solution","og:description":"The IoT Gateway Solution aims to accelerate IoT development needs with integrated, comprehensive and fully documented out-of-the-box guidance and support.\r\nIt includes the NXP Modular IoT Gateway and Modular Edge Node, which are tested and verified for ZigBee®","og:image":"https://old.roi4cio.com/fileadmin/user_upload/NXP_Semiconductors_IoT_GATEWAY_Solution.png"},"eventUrl":"","translationId":4905,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":178,"title":"IoT - Internet of Things","alias":"iot-internet-of-things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":3370,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Logo_Mprest-750x422.jpg","logo":true,"scheme":false,"title":"mPrest HLS","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"mprest-hls","companyTitle":"mPrest","companyTypes":["supplier","vendor"],"companyId":5260,"companyAlias":"mprest","description":"<span style=\"font-weight: bold; \">mPrest hls: system of systems taking homeland security to new heights</span>\r\nmPrest offers a game-changing, product-based command, control and analytics platform. Ideal for critical facilities and safe cities, the flexible platform acts as a system of systems which supports multiple vendors and applications. By empowering operators and decision makers with a unique ability to carry out all site-security and operational procedures in a fully automated fashion, security teams can more effectively focus on real-time crisis management. mPrest HLS supports both organizational and functional hierarchies for covering all<br />critical facilities and homeland-related security aspects and needs.<br /><span style=\"font-weight: bold; \"><br />Unprecedented flexibility</span>\r\nOperators and integrators can easily scale up on their own, both on a sensor interface level, as well as by modifying or creating new Standard Operating Procedures (SOPs) via a simple "drag and drop" rules engine interface. This allows for rules to be clearly and easily defined in real time – with no developer intervention necessary.<br /> <br /><span style=\"font-weight: bold; \">Unmatched scalability and interoperability</span>\r\nmPrest HLS offers unparalleled integration and connectivity across multiple security platforms and applications from different vendors under a single situational awareness and incident response platform. These include:\r\n\r\n<ul><li>Alarms</li><li>CCTVs and NVPs</li><li>Access control</li><li>License Plate Recognition (LPR)</li><li>Cyber-SOCs</li><li>Drones and anti-drone systems</li><li>IT platforms (ERP and dispatch control systems)</li><li>Radars</li><li>External agencies</li><li>Fire/smoke/safety</li><li>Public Announcement (PA)</li></ul>\r\n\r\nThe mPrest HLS platform is equipped with graphical wizard tools for easy configuration of standard operating procedures (SOP), interface rules and automated procedures. Its software architecture is based on a building block methodology that compartmentalizes software layers, enabling the updating, enhancing and adding of features easily and rapidly. The platform’s intuitive rules engine incorporates multiple sensors, enabling system administrators to protect sites with fewer false alarms. mPrest HLS includes a range of business logic modules from event management, through site manager, to user and permission manager. It also features an interface layer that includes a set of adapters and managers for each sensor and subsystem type, a set of managers per subsystem type, and adapters for each vendor.","shortDescription":"mPrest offers a game-changing, product-based command, control and analytics platform","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":12,"sellingCount":6,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"mPrest HLS","keywords":"","description":"<span style=\"font-weight: bold; \">mPrest hls: system of systems taking homeland security to new heights</span>\r\nmPrest offers a game-changing, product-based command, control and analytics platform. Ideal for critical facilities and safe cities, the flexi","og:title":"mPrest HLS","og:description":"<span style=\"font-weight: bold; \">mPrest hls: system of systems taking homeland security to new heights</span>\r\nmPrest offers a game-changing, product-based command, control and analytics platform. Ideal for critical facilities and safe cities, the flexi","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Logo_Mprest-750x422.jpg"},"eventUrl":"","translationId":3371,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":5,"title":"Security Software","alias":"security-software","description":" Computer security software or cybersecurity software is any computer program designed to enhance information security. Security software is a broad term that encompasses a suite of different types of software that deliver data and computer and network security in various forms. \r\nSecurity software can protect a computer from viruses, malware, unauthorized users and other security exploits originating from the Internet. Different types of security software include anti-virus software, firewall software, network security software, Internet security software, malware/spamware removal and protection software, cryptographic software, and more.\r\nIn end-user computing environments, anti-spam and anti-virus security software is the most common type of software used, whereas enterprise users add a firewall and intrusion detection system on top of it. \r\nSecurity soft may be focused on preventing attacks from reaching their target, on limiting the damage attacks can cause if they reach their target and on tracking the damage that has been caused so that it can be repaired. As the nature of malicious code evolves, security software also evolves.<span style=\"font-weight: bold; \"></span>\r\n<span style=\"font-weight: bold; \">Firewall. </span>Firewall security software prevents unauthorized users from accessing a computer or network without restricting those who are authorized. Firewalls can be implemented with hardware or software. Some computer operating systems include software firewalls in the operating system itself. For example, Microsoft Windows has a built-in firewall. Routers and servers can include firewalls. There are also dedicated hardware firewalls that have no other function other than protecting a network from unauthorized access.\r\n<span style=\"font-weight: bold; \">Antivirus.</span> Antivirus solutions work to prevent malicious code from attacking a computer by recognizing the attack before it begins. But it is also designed to stop an attack in progress that could not be prevented, and to repair damage done by the attack once the attack abates. Antivirus software is useful because it addresses security issues in cases where attacks have made it past a firewall. New computer viruses appear daily, so antivirus and security software must be continuously updated to remain effective.\r\n<span style=\"font-weight: bold; \">Antispyware.</span> While antivirus software is designed to prevent malicious software from attacking, the goal of antispyware software is to prevent unauthorized software from stealing information that is on a computer or being processed through the computer. Since spyware does not need to attempt to damage data files or the operating system, it does not trigger antivirus software into action. However, antispyware software can recognize the particular actions spyware is taking by monitoring the communications between a computer and external message recipients. When communications occur that the user has not authorized, antispyware can notify the user and block further communications.\r\n<span style=\"font-weight: bold; \">Home Computers.</span> Home computers and some small businesses usually implement security software at the desktop level - meaning on the PC itself. This category of computer security and protection, sometimes referred to as end-point security, remains resident, or continuously operating, on the desktop. Because the software is running, it uses system resources, and can slow the computer's performance. However, because it operates in real time, it can react rapidly to attacks and seek to shut them down when they occur.\r\n<span style=\"font-weight: bold; \">Network Security.</span> When several computers are all on the same network, it's more cost-effective to implement security at the network level. Antivirus software can be installed on a server and then loaded automatically to each desktop. However firewalls are usually installed on a server or purchased as an independent device that is inserted into the network where the Internet connection comes in. All of the computers inside the network communicate unimpeded, but any data going in or out of the network over the Internet is filtered trough the firewall.<br /><br /><br />","materialsDescription":"<h1 class=\"align-center\"> <span style=\"font-weight: normal; \">What is IT security software?</span></h1>\r\nIT security software provides protection to businesses’ computer or network. It serves as a defense against unauthorized access and intrusion in such a system. It comes in various types, with many businesses and individuals already using some of them in one form or another.\r\nWith the emergence of more advanced technology, cybercriminals have also found more ways to get into the system of many organizations. Since more and more businesses are now relying their crucial operations on software products, the importance of security system software assurance must be taken seriously – now more than ever. Having reliable protection such as a security software programs is crucial to safeguard your computing environments and data. \r\n<p class=\"align-left\">It is not just the government or big corporations that become victims of cyber threats. In fact, small and medium-sized businesses have increasingly become targets of cybercrime over the past years. </p>\r\n<h1 class=\"align-center\"><span style=\"font-weight: normal; \">What are the features of IT security software?</span></h1>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Automatic updates. </span>This ensures you don’t miss any update and your system is the most up-to-date version to respond to the constantly emerging new cyber threats.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Real-time scanning.</span> Dynamic scanning features make it easier to detect and infiltrate malicious entities promptly. Without this feature, you’ll risk not being able to prevent damage to your system before it happens.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Auto-clean.</span> A feature that rids itself of viruses even without the user manually removing it from its quarantine zone upon detection. Unless you want the option to review the malware, there is no reason to keep the malicious software on your computer which makes this feature essential.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Multiple app protection.</span> This feature ensures all your apps and services are protected, whether they’re in email, instant messenger, and internet browsers, among others.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application level security.</span> This enables you to control access to the application on a per-user role or per-user basis to guarantee only the right individuals can enter the appropriate applications.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Role-based menu.</span> This displays menu options showing different users according to their roles for easier assigning of access and control.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Row-level (multi-tenant) security.</span> This gives you control over data access at a row-level for a single application. This means you can allow multiple users to access the same application but you can control the data they are authorized to view.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Single sign-on.</span> A session or user authentication process that allows users to access multiple related applications as long as they are authorized in a single session by only logging in their name and password in a single place.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">User privilege parameters.</span> These are customizable features and security as per individual user or role that can be accessed in their profile throughout every application.</li></ul>\r\n\r\n<ul><li><span style=\"font-weight: bold; \">Application activity auditing.</span> Vital for IT departments to quickly view when a user logged in and off and which application they accessed. Developers can log end-user activity using their sign-on/signoff activities.</li></ul>\r\n<p class=\"align-left\"><br /><br /><br /><br /></p>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Software.png"},{"id":59,"title":"SCADA - Supervisory Control And Data Acquisition","alias":"scada-supervisory-control-and-data-acquisition","description":"<span style=\"font-weight: bold; \">SCADA</span> stands for <span style=\"font-weight: bold; \">Supervisory Control and Data Acquisition</span>, a term which describes the basic functions of a SCADA system. Companies use SCADA systems to control equipment across their sites and to collect and record data about their operations. SCADA is not a specific technology, but a type of application. Any application that gets operating data about a system in order to control and optimise that system is a SCADA application. That application may be a petrochemical distillation process, a water filtration system, a pipeline compressor, or just about anything else.\r\nSCADA solutions typically come in a combination of software and hardware elements, such as programmable logic controllers (PLCs) and remote terminal units (RTUs). Data acquisition in SCADA starts with PLCs and RTUs, which communicate with plant floor equipment such as factory machinery and sensors. Data gathered from the equipment is then sent to the next level, such as a control room, where operators can supervise the PLC and RTU controls using human-machine interfaces (HMIs). HMIs are an important element of SCADA systems. They are the screens that operators use to communicate with the SCADA system.\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">The major components of a SCADA technology include:</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Master Terminal Unit (MTU).</span> It comprises a computer, PLC and a network server that helps MTU to communicate with the RTUs. MTU begins communication, collects and saves data, helps to interface with operators and to communicate data to other systems.</li><li><span style=\"font-weight: bold;\">Remote Terminal Unit (RTU).</span> RTU is used to collect information from these sensors and further sends the data to MTU. RTUs have the storage capacity facility. So, it stores the data and transmits the data when MTU sends the corresponding command.</li><li><span style=\"font-weight: bold;\">Communication Network (defined by its network topology).</span> In general, network means connection. When you tell a SCADA communication network, it is defined as a link between RTU in the field to MTU in the central location. The bidirectional wired or wireless communication channel is used for the networking purpose. Various other communication mediums like fiber optic cables, twisted pair cables, etc. are also used.</li></ul>\r\n<p class=\"align-center\"><span style=\"font-weight: bold; \">Objectives of Supervisory Control and Data Acquisition system</span></p>\r\n<ul><li><span style=\"font-weight: bold;\">Monitor:</span> SCADA control system continuously monitors the physical parameters</li><li><span style=\"font-weight: bold;\">Measure:</span> It measures the parameter for processing</li><li><span style=\"font-weight: bold;\">Data Acquisition:</span> It acquires data from RTU, data loggers, etc</li><li><span style=\"font-weight: bold;\">Data Communication:</span> It helps to communicate and transmit a large amount of data between MTU and RTU units</li><li><span style=\"font-weight: bold;\">Controlling:</span> Online real-time monitoring and controlling of the process</li><li><span style=\"font-weight: bold;\">Automation:</span> It helps for automatic transmission and functionality</li></ul>\r\n\r\n","materialsDescription":"<h1 class=\"align-center\">Who Uses SCADA?</h1>\r\nSCADA systems are used by industrial organizations and companies in the public and private sectors to control and maintain efficiency, distribute data for smarter decisions, and communicate system issues to help mitigate downtime. Supervisory control systems work well in many different types of enterprises because they can range from simple configurations to large, complex installations. They are the backbone of many modern industries, including:\r\n<ul><li>Energy</li><li>Food and beverage</li><li>Manufacturing</li><li>Oil and gas</li><li>Power</li><li>Recycling</li><li>Transportation</li><li>Water and waste water</li><li>And many more</li></ul>\r\nVirtually anywhere you look in today's world, there is some type of SCADA monitoring system running behind the scenes: maintaining the refrigeration systems at the local supermarket, ensuring production and safety at a refinery, achieving quality standards at a waste water treatment plant, or even tracking your energy use at home, to give a few examples. Effective SCADA systems can result in significant savings of time and money. Numerous case studies have been published highlighting the benefits and savings of using a modern SCADA software.\r\n<h1 class=\"align-center\">Benefits of using SCADA software</h1>\r\nUsing modern SCADA software provides numerous benefits to businesses, and helps companies make the most of those benefits. Some of these advantages include:\r\n<span style=\"font-weight: bold; \">Easier engineering:</span> An advanced supervisory control application such provides easy-to-locate tools, wizards, graphic templates and other pre-configured elements, so engineers can create automation projects and set parameters quickly, even if they don't have programming experience. In addition, you can also easily maintain and expand existing applications as needed. The ability to automate the engineering process allows users, particularly system integrators and original equipment manufacturers (OEM), to set up complex projects much more efficiently and accurately.\r\n<span style=\"font-weight: bold; \">Improved data management:</span> A high-quality SCADA system makes it easier to collect, manage, access and analyze your operational data. It can enable automatic data recording and provide a central location for data storage. Additionally, it can transfer data to other systems such as MES and ERP as needed. \r\n<span style=\"font-weight: bold; \">Greater visibility:</span> One of the main advantages of using SCADA software is the improvement in visibility into your operations. It provides you with real-time information about your operations and enables you to conveniently view that information via an HMI. SCADA monitoring can also help in generating reports and analyzing data.\r\n<span style=\"font-weight: bold; \">Enhanced efficiency:</span> A SCADA system allows you to streamline processes through automated actions and user-friendly tools. The data that SCADA provides allows you to uncover opportunities for improving the efficiency of the operations, which can be used to make long-term changes to processes or even respond to real-time changes in conditions.\r\n<span style=\"font-weight: bold; \">Increased usability:</span> SCADA systems enable workers to control equipment more quickly, easily and safely through an HMI. Rather than having to control each piece of machinery manually, workers can manage them remotely and often control many pieces of equipment from a single location. Managers, even those who are not currently on the floor, also gain this capability.\r\n<span style=\"font-weight: bold; \">Reduced downtime:</span> A SCADA system can detect faults at an early stage and push instant alerts to the responsible personnel. Powered by predictive analytics, a SCADA system can also inform you of a potential issue of the machinery before it fails and causes larger problems. These features can help improve the overall equipment effectiveness (OEE) and reduce the amount of time and cost on troubleshooting and maintenance.\r\n<span style=\"font-weight: bold;\">Easy integration:</span> Connectivity to existing machine environments is key to removing data silos and maximizing productivity. \r\n<span style=\"font-weight: bold;\">Unified platform:</span>All of your data is also available in one platform, which helps you to get a clear overview of your operations and take full advantage of your data. All users also get real-time updates locally or remotely, ensuring everyone on your team is on the same page.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/SCADA__-_Supervisory_Control_And_Data_Acquisition.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]},{"id":4910,"logoURL":"https://old.roi4cio.com/fileadmin/user_upload/Opengear_logo.png","logo":true,"scheme":false,"title":"OpenGear IoT Gateways","vendorVerified":0,"rating":"0.00","implementationsCount":0,"suppliersCount":0,"supplierPartnersCount":0,"alias":"opengear-iot-gateways","companyTitle":"Opengear","companyTypes":["vendor"],"companyId":5292,"companyAlias":"opengear","description":"The arrival of the Internet of Things (IoT) requires a new level of resilience in the data center and edge networking equipment. As the number of connected objects continues to grow and the IoT becomes ubiquitous, organizations in almost every industry will have to bolster their networks with fog computing and cellular out-of-band management solutions.\r\nManage your mission-critical endpoints — wherever they are — and keep them connected at all times via 3G and 4G LTE.\r\nBy moving certain compute resources away from the center and closer to the edge of a network, organizations will be able to more effectively handle all of their data — no matter where it’s coming from or going to. Routers, switches and other hardened gateway devices that will be the core part of a fog computing deployment can help to effectively facilitate data handling and backhaul.\r\nOpengear’s smart network management solutions give IT admins the ability to use robust and always-available 3G and 4G LTE connections instead of legacy wireline modems. Your team will be able to remotely manage and oversee the switches, routers and other endpoints that form the core of any fog computing arrangement. This way, even a small group of IT admins can ensure that any number of mission-critical endpoints, no matter where they’re located, are working well at all times.\r\nBy pairing an investment in the IoT with <span style=\"font-weight: bold;\">Opengear’s SmartOOB™</span> management, organizations can rest assured that the network at the heart of their newly connected operations will function properly and that problems can be quickly identified and easily resolved.\r\n<span style=\"font-weight: bold;\">Benefits:</span>\r\n<ul><li>Always-on connectivity through mainline connections and embedded 4G LTE</li><li>Ability to reimage and reboot devices remotely, even when primary connections are down</li><li>High- and low-density models to support any sized deployment</li><li>Scalability to support accelerating IoT network of devices</li><li>Device agnostic to support any endpoint or beacon manufacturer</li></ul>\r\n<span style=\"font-weight: bold;\">Products:</span>\r\n<ul><li>ACM7000-L – Resilience Gateway</li><li>ACM7000 Remote Site Gateway</li><li>IM7200 Infrastructure Manager</li></ul>","shortDescription":"Keeping Your “Connected Things” Connected.\r\n","type":null,"isRoiCalculatorAvaliable":false,"isConfiguratorAvaliable":false,"bonus":100,"usingCount":0,"sellingCount":17,"discontinued":0,"rebateForPoc":0,"rebate":0,"seo":{"title":"OpenGear IoT Gateways","keywords":"","description":"The arrival of the Internet of Things (IoT) requires a new level of resilience in the data center and edge networking equipment. As the number of connected objects continues to grow and the IoT becomes ubiquitous, organizations in almost every industry will ha","og:title":"OpenGear IoT Gateways","og:description":"The arrival of the Internet of Things (IoT) requires a new level of resilience in the data center and edge networking equipment. As the number of connected objects continues to grow and the IoT becomes ubiquitous, organizations in almost every industry will ha","og:image":"https://old.roi4cio.com/fileadmin/user_upload/Opengear_logo.png"},"eventUrl":"","translationId":4911,"dealDetails":null,"roi":null,"price":null,"bonusForReference":null,"templateData":[],"testingArea":"","categories":[{"id":178,"title":"IoT - Internet of Things","alias":"iot-internet-of-things","description":"The Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.\r\nThe definition of the Internet of things has evolved due to the convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation). and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.\r\nThe IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.","materialsDescription":"<span style=\"font-weight: bold;\">What is the Internet of Things (IoT)?</span>\r\nThe Internet of things refers to the network of things (physical objects) that can be connected to the Internet to collect and share data without human-to-human or human-to-computer interaction.\r\n<span style=\"font-weight: bold;\">Why is it called the Internet of Things?</span>\r\nThe term Internet of things was coined by Kevin Ashton in 1999. Stemming from Kevin Ashton’s experience with RFID, the term Internet of things originally described the concept of tagging every object in a person’s life with machine-readable codes. This would allow computers to easily manage and inventory all of these things.\r\nThe term IoT today has evolved to a much broader prospect. It now encompasses ubiquitous connectivity, devices, sensors, analytics, machine learning, and many other technologies.\r\n<span style=\"font-weight: bold;\">What is an IoT solution?</span>\r\nAn IoT solution is a combination of devices or other data sources, outfitted with sensors and Internet connected hardware to securely report information back to an IoT platform. This information is often a physical metric which can help users answer a question or solve a specific problem.\r\n<span style=\"font-weight: bold;\">What is an IoT Proof of Concept (PoC)?</span>\r\nThe purpose of a PoC is to experiment with a solution in your environment, collect data, and evaluate performance from a set timeline on a set budget. A PoC is a low-risk way to introduce IoT to an organization.\r\n<span style=\"font-weight: bold;\">What is an IoT cloud platform?</span>\r\nAn IoT platform provides users with one or more of these key elements — visualization tools, data security features, a workflow engine and a custom user interface to utilize the information collected from devices and other data sources in the field. These platforms are based in the cloud and can be accessed from anywhere.\r\n<span style=\"font-weight: bold;\">What is industrial equipment monitoring?</span>\r\nIndustrial equipment monitoring uses a network of connected sensors - either native to a piece of equipment or retrofitted - to inform owners/operators of a machine’s output, component conditions, need for service or impending failure. Industrial equipment monitoring is an IoT solution which can utilize an IoT platform to unify disparate data and enable decision-makers to respond to real-time data.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/IoT_-_Internet_of_Things.png"},{"id":471,"title":"Hardware","alias":"hardware","description":" Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphics card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.\r\nHardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.\r\nThe template for all modern computers is the Von Neumann architecture, detailed in a 1945 paper by Hungarian mathematician John von Neumann. This describes a design architecture for an electronic digital computer with subdivisions of a processing unit consisting of an arithmetic logic unit and processor registers, a control unit containing an instruction register and program counter, a memory to store both data and instructions, external mass storage, and input and output mechanisms. The meaning of the term has evolved to mean a stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the Von Neumann bottleneck and often limits the performance of the system.","materialsDescription":" <span style=\"font-weight: bold; \">What does Hardware (H/W) mean?</span>\r\nHardware (H/W), in the context of technology, refers to the physical elements that make up a computer or electronic system and everything else involved that is physically tangible. This includes the monitor, hard drive, memory and CPU. Hardware works hand-in-hand with firmware and software to make a computer function.\r\n<span style=\"font-weight: bold; \">What are the types of computer systems?</span>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Personal computer</span></span>\r\nThe personal computer, also known as the PC, is one of the most common types of computer due to its versatility and relatively low price. Laptops are generally very similar, although they may use lower-power or reduced size components, thus lower performance.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Case</span></span>\r\nThe computer case encloses and holds most of the components of the system. It provides mechanical support and protection for internal elements such as the motherboard, disk drives, and power supplies, and controls and directs the flow of cooling air over internal components. The case is also part of the system to control electromagnetic interference radiated by the computer, and protects internal parts from electrostatic discharge. Large tower cases provide extra internal space for multiple disk drives or other peripherals and usually stand on the floor, while desktop cases provide less expansion room. All-in-one style designs include a video display built into the same case. Portable and laptop computers require cases that provide impact protection for the unit. A current development in laptop computers is a detachable keyboard, which allows the system to be configured as a touch-screen tablet. Hobbyists may decorate the cases with colored lights, paint, or other features, in an activity called case modding.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Power supply</span></span>\r\nA power supply unit (PSU) converts alternating current (AC) electric power to low-voltage direct current (DC) power for the internal components of the computer. Laptops are capable of running from a built-in battery, normally for a period of hours. The PSU typically uses a switched-mode power supply (SMPS), with power MOSFETs (power metal–oxide–semiconductor field-effect transistors) used in the converters and regulator circuits of the SMPS.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Motherboard</span></span>\r\nThe motherboard is the main component of a computer. It is a board with integrated circuitry that connects the other parts of the computer including the CPU, the RAM, the disk drives (CD, DVD, hard disk, or any others) as well as any peripherals connected via the ports or the expansion slots. The integrated circuit (IC) chips in a computer typically contain billions of tiny metal–oxide–semiconductor field-effect transistors (MOSFETs).\r\nComponents directly attached to or to part of the motherboard include:\r\n<ul><li><span style=\"font-weight: bold; \">The CPU (central processing unit)</span>, which performs most of the calculations which enable a computer to function, and is referred to as the brain of the computer which get a hold of program instruction from random-access memory (RAM), interprets and processes it and then send it backs to computer result so that the relevant components can carry out the instructions. The CPU is a microprocessor, which is fabricated on a metal–oxide–semiconductor (MOS) integrated circuit (IC) chip. It is usually cooled by a heat sink and fan, or water-cooling system. Most newer CPU include an on-die graphics processing unit (GPU). The clock speed of CPU governs how fast it executes instructions, and is measured in GHz; typical values lie between 1 GHz and 5 GHz. Many modern computers have the option to overclock the CPU which enhances performance at the expense of greater thermal output and thus a need for improved cooling.</li><li><span style=\"font-weight: bold; \">The chipset</span>, which includes the north bridge, mediates communication between the CPU and the other components of the system, including main memory; as well as south bridge, which is connected to the north bridge, and supports auxiliary interfaces and buses; and, finally, a Super I/O chip, connected through the south bridge, which supports the slowest and most legacy components like serial ports, hardware monitoring and fan control.</li><li><span style=\"font-weight: bold; \">Random-access memory (RAM)</span>, which stores the code and data that are being actively accessed by the CPU. For example, when a web browser is opened on the computer it takes up memory; this is stored in the RAM until the web browser is closed. It is typically a type of dynamic RAM (DRAM), such as synchronous DRAM (SDRAM), where MOS memory chips store data on memory cells consisting of MOSFETs and MOS capacitors. RAM usually comes on dual in-line memory modules (DIMMs) in the sizes of 2GB, 4GB, and 8GB, but can be much larger.</li><li><span style=\"font-weight: bold; \">Read-only memory (ROM)</span>, which stores the BIOS that runs when the computer is powered on or otherwise begins execution, a process known as Bootstrapping, or "booting" or "booting up". The ROM is typically a nonvolatile BIOS memory chip, which stores data on floating-gate MOSFET memory cells.</li><li><span style=\"font-weight: bold; \">The BIOS (Basic Input Output System)</span> includes boot firmware and power management firmware. Newer motherboards use Unified Extensible Firmware Interface (UEFI) instead of BIOS.</li><li><span style=\"font-weight: bold; \">Buses</span> that connect the CPU to various internal components and to expand cards for graphics and sound.</li><li><span style=\"font-weight: bold; \">The CMOS</span> (complementary MOS) battery, which powers the CMOS memory for date and time in the BIOS chip. This battery is generally a watch battery.</li><li><span style=\"font-weight: bold; \">The video card</span> (also known as the graphics card), which processes computer graphics. More powerful graphics cards are better suited to handle strenuous tasks, such as playing intensive video games or running computer graphics software. A video card contains a graphics processing unit (GPU) and video memory (typically a type of SDRAM), both fabricated on MOS integrated circuit (MOS IC) chips.</li><li><span style=\"font-weight: bold; \">Power MOSFETs</span> make up the voltage regulator module (VRM), which controls how much voltage other hardware components receive.</li></ul>\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Expansion cards</span></span>\r\nAn expansion card in computing is a printed circuit board that can be inserted into an expansion slot of a computer motherboard or backplane to add functionality to a computer system via the expansion bus. Expansion cards can be used to obtain or expand on features not offered by the motherboard.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Storage devices</span></span>\r\nA storage device is any computing hardware and digital media that is used for storing, porting and extracting data files and objects. It can hold and store information both temporarily and permanently, and can be internal or external to a computer, server or any similar computing device. Data storage is a core function and fundamental component of computers.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Fixed media</span></span>\r\nData is stored by a computer using a variety of media. Hard disk drives (HDDs) are found in virtually all older computers, due to their high capacity and low cost, but solid-state drives (SSDs) are faster and more power efficient, although currently more expensive than hard drives in terms of dollar per gigabyte, so are often found in personal computers built post-2007. SSDs use flash memory, which stores data on MOS memory chips consisting of floating-gate MOSFET memory cells. Some systems may use a disk array controller for greater performance or reliability.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Removable media</span></span>\r\nTo transfer data between computers, an external flash memory device (such as a memory card or USB flash drive) or optical disc (such as a CD-ROM, DVD-ROM or BD-ROM) may be used. Their usefulness depends on being readable by other systems; the majority of machines have an optical disk drive (ODD), and virtually all have at least one Universal Serial Bus (USB) port.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input and output peripherals</span></span>\r\nInput and output devices are typically housed externally to the main computer chassis. The following are either standard or very common to many computer systems.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Input</span></span>\r\nInput devices allow the user to enter information into the system, or control its operation. Most personal computers have a mouse and keyboard, but laptop systems typically use a touchpad instead of a mouse. Other input devices include webcams, microphones, joysticks, and image scanners.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Output device</span></span>\r\nOutput devices display information in a human readable form. Such devices could include printers, speakers, monitors or a Braille embosser.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Mainframe computer</span></span>\r\nA mainframe computer is a much larger computer that typically fills a room and may cost many hundreds or thousands of times as much as a personal computer. They are designed to perform large numbers of calculations for governments and large enterprises.\r\n<span style=\"font-style: italic; \"><span style=\"font-weight: bold; \">Departmental computing</span></span>\r\nIn the 1960s and 1970s, more and more departments started to use cheaper and dedicated systems for specific purposes like process control and laboratory automation.\r\n<span style=\"font-style: italic;\"><span style=\"font-weight: bold;\">Supercomputer</span></span>\r\nA supercomputer is superficially similar to a mainframe, but is instead intended for extremely demanding computational tasks. As of June 2018, the fastest supercomputer on the TOP500supercomputer list is the Summit, in the United States, with a LINPACK benchmarkscore of 122.3 PFLOPS Light, by around 29 PFLOPS.\r\nThe term supercomputer does not refer to a specific technology. Rather it indicates the fastest computations available at any given time. In mid 2011, the fastest supercomputers boasted speeds exceeding one petaflop, or 1 quadrillion (10^15 or 1,000 trillion) floating point operations per second. Supercomputers are fast but extremely costly, so they are generally used by large organizations to execute computationally demanding tasks involving large data sets. Supercomputers typically run military and scientific applications. Although costly, they are also being used for commercial applications where huge amounts of data must be analyzed. For example, large banks employ supercomputers to calculate the risks and returns of various investment strategies, and healthcare organizations use them to analyze giant databases of patient data to determine optimal treatments for various diseases and problems incurring to the country. ","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Hardware.jpg"},{"id":513,"title":"Networking","alias":"networking","description":" Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts or data terminal equipment.\r\nNetworking devices may include gateways, routers, network bridges, modems, wireless access points, networking cables, line drivers, switches, hubs, and repeaters; and may also include hybrid network devices such as multilayer switches, protocol converters, bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface controllers, wireless network interface controllers, ISDN terminal adapters and other related hardware.\r\nThe most common kind of networking hardware today is a copper-based Ethernet adapter which is a standard inclusion on most modern computer systems. Wireless networking has become increasingly popular, especially for portable and handheld devices.\r\nOther networking hardware used in computers includes data center equipment (such as file servers, database servers and storage areas), network services (such as DNS, DHCP, email, etc.) as well as devices which assure content delivery.\r\nTaking a wider view, mobile phones, tablet computers and devices associated with the internet of things may also be considered networking hardware. As technology advances and IP-based networks are integrated into building infrastructure and household utilities, network hardware will become an ambiguous term owing to the vastly increasing number of network capable endpoints.","materialsDescription":" <span style=\"font-weight: bold;\">What is network equipment?</span>\r\nNetwork equipment - devices necessary for the operation of a computer network, for example: a router, switch, hub, patch panel, etc. You can distinguish between active and passive network equipment.\r\n<span style=\"font-weight: bold;\">What is an active network equipment?</span>\r\nActive networking equipment is equipment followed by some “smart” feature. That is, a router, switch (switch), etc. are active network equipment.\r\n<span style=\"font-weight: bold;\">What is passive network equipment?</span>\r\nPassive network equipment - equipment not endowed with "intellectual" features. For example - cable system: cable (coaxial and twisted pair (UTP/STP)), plug / socket (RG58, RJ45, RJ11, GG45), repeater (repeater), patch panel, hub (hub), balun (balun) for coaxial cables (RG-58), etc. Also, passive equipment can include mounting cabinets and racks, telecommunication cabinets.\r\n<span style=\"font-weight: bold;\">What are the main network components?</span>\r\nThe main components of the network are workstations, servers, transmission media (cables) and network equipment.\r\n<span style=\"font-weight: bold;\">What are workstations?</span>\r\nWorkstations are network computers where network users implement application tasks.\r\n<span style=\"font-weight: bold;\">What are network servers?</span>\r\nNetwork servers - hardware and software systems that perform the functions of controlling the distribution of network shared resources. A server can be any computer connected to the network on which the resources used by other devices on the local network are located. As the server hardware, fairly powerful computers are used.","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Networking.png"},{"id":540,"title":"Security Hardware","alias":"security-hardware","description":"Hardware security as a discipline originated out of cryptographic engineering and involves hardware design, access control, secure multi-party computation, secure key storage, ensuring code authenticity and measures to ensure that the supply chain that built the product is secure, among other things.\r\nA hardware security module (HSM) is a physical computing device that safeguards and manages digital keys for strong authentication and provides cryptoprocessing. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server.\r\nSome providers in this discipline consider that the key difference between hardware security and software security is that hardware security is implemented using "non-Turing-machine" logic (raw combinatorial logic or simple state machines). One approach, referred to as "hardsec", uses FPGAs to implement non-Turing-machine security controls as a way of combining the security of hardware with the flexibility of software.\r\nHardware backdoors are backdoors in hardware. Conceptionally related, a hardware Trojan (HT) is a malicious modification of an electronic system, particularly in the context of an integrated circuit.\r\nA physical unclonable function (PUF) is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict. Further, an individual PUF device must be easy to make but practically impossible to duplicate, even given the exact manufacturing process that produced it. In this respect, it is the hardware analog of a one-way function. The name "physically unclonable function" might be a little misleading as some PUFs are clonable, and most PUFs are noisy and therefore do not achieve the requirements for a function. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high-security requirements.\r\nMany attacks on sensitive data and resources reported by organizations occur from within the organization itself.","materialsDescription":"<span style=\"font-weight: bold;\">What is hardware information security?</span>\r\nHardware means various types of devices (mechanical, electromechanical, electronic, etc.), which solve information protection problems with hardware. They impede access to information, including through its disguise. The hardware includes: noise generators, surge protectors, scanning radios and many other devices that "block" potential channels of information leakage or allow them to be detected. The advantages of technical means are related to their reliability, independence from subjective factors and high resistance to modification. The weaknesses include a lack of flexibility, relatively large volume and mass and high cost. The hardware for information protection includes the most diverse technical structures in terms of operation, device and capabilities, which ensure the suppression of disclosure, protection against leakage and counteraction to unauthorized access to sources of confidential information.\r\n<span style=\"font-weight: bold;\">Where is the hardware used to protect information?</span>\r\nHardware information protection is used to solve the following problems:\r\n<ul><li>conducting special studies of technical means of ensuring production activity for the presence of possible channels of information leakage;</li><li>identification of information leakage channels at various objects and in premises;</li><li>localization of information leakage channels;</li><li>search and detection of industrial espionage tools;</li><li>countering unauthorized access to confidential information sources and other actions.</li></ul>\r\n<span style=\"font-weight: bold;\">What is the classification of information security hardware?</span>\r\nAccording to the functional purpose, the hardware can be classified into detection tools, search tools and detailed measurements and active and passive countermeasures. At the same time, according to their technical capabilities, information protection tools can be general-purpose, designed for use by non-professionals in order to obtain preliminary (general) estimates, and professional complexes that allow for a thorough search, detection and precision measurement of all the characteristics of industrial espionage equipment. As an example of the former, we can consider a group of IP electromagnetic radiation indicators, which have a wide range of received signals and rather low sensitivity. As a second example - a complex for the detection and direction finding of radio bookmarks, designed to automatically detect and locate radio transmitters, radio microphones, telephone bookmarks and network radio transmitters.<br /><br />","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/icon_Security_Hardware.png"},{"id":834,"title":"IoT - Internet of Things Security","alias":"iot-internet-of-things-security","description":" IoT security is the technology area concerned with safeguarding connected devices and networks in the internet of things (IoT).\r\nIoT involves adding internet connectivity to a system of interrelated computing devices, mechanical and digital machines, objects, animals and/or people. Each "thing" is provided a unique identifier and the ability to automatically transfer data over a network. Allowing devices to connect to the internet opens them up to a number of serious vulnerabilities if they are not properly protected.\r\nIoT security has become the subject of scrutiny after a number of high-profile incidents where a common IoT device was used to infiltrate and attack the larger network. Implementing security measures is critical to ensuring the safety of networks with IoT devices connected to them.\r\nIoT security hacks can happen in any industry, from smart home to a manufacturing plant to a connected car. The severity of impact depends greatly on the individual system, the data collected and/or the information it contains.\r\nAn attack disabling the brakes of a connected car, for example, or on a connected health device, such as an insulin pump hacked to administer too much medication to a patient, can be life-threatening. Likewise, an attack on a refrigeration system housing medicine that is monitored by an IoT system can ruin the viability of a medicine if temperatures fluctuate. Similarly, an attack on critical infrastructure -- an oil well, energy grid or water supply -- can be disastrous.\r\nSo, a robust IoT security portfolio must allow protecting devices from all types of vulnerabilities while deploying the security level that best matches application needs. Cryptography technologies are used to combat communication attacks. Security services are offered for protecting against lifecycle attacks. Isolation measures can be implemented to fend off software attacks. And, finally, IoT security should include tamper mitigation and side-channel attack mitigation technologies for fighting physical attacks of the chip.","materialsDescription":" <span style=\"font-weight: bold;\">What are the key requirements of IoT Security?</span>\r\nThe key requirements for any IoT security solution are:\r\n<ul><li>Device and data security, including authentication of devices and confidentiality and integrity of data</li><li>Implementing and running security operations at IoT scale</li><li>Meeting compliance requirements and requests</li><li>Meeting performance requirements as per the use case</li></ul>\r\n<span style=\"font-weight: bold;\">What do connected devices require to participate in the IoT Securely?</span>\r\nTo securely participate in the IoT, each connected device needs a unique identification – even before it has an IP address. This digital credential establishes the root of trust for the device’s entire lifecycle, from initial design to deployment to retirement.\r\n<span style=\"font-weight: bold;\">Why is device authentication necessary for the IoT?</span>\r\nStrong IoT device authentication is required to ensure connected devices on the IoT can be trusted to be what they purport to be. Consequently, each IoT device needs a unique identity that can be authenticated when the device attempts to connect to a gateway or central server. With this unique ID in place, IT system administrators can track each device throughout its lifecycle, communicate securely with it, and prevent it from executing harmful processes. If a device exhibits unexpected behavior, administrators can simply revoke its privileges.\r\n<span style=\"font-weight: bold;\">Why is secure manufacturing necessary for IoT devices?</span>\r\nIoT devices produced through unsecured manufacturing processes provide criminals opportunities to change production runs to introduce unauthorized code or produce additional units that are subsequently sold on the black market.\r\nOne way to secure manufacturing processes is to use hardware security modules (HSMs) and supporting security software to inject cryptographic keys and digital certificates and to control the number of units built and the code incorporated into each.\r\n<span style=\"font-weight: bold;\">Why is code signing necessary for IoT devices?</span>\r\nTo protect businesses, brands, partners, and users from software that has been infected by malware, software developers have adopted code signing. In the IoT, code signing in the software release process ensures the integrity of IoT device software and firmware updates and defends against the risks associated with code tampering or code that deviates from organizational policies.\r\nIn public key cryptography, code signing is a specific use of certificate-based digital signatures that enables an organization to verify the identity of the software publisher and certify the software has not been changed since it was published.\r\n<span style=\"font-weight: bold;\">What is IoT PKI?</span>\r\nToday there are more things (devices) online than there are people on the planet! Devices are the number one users of the Internet and need digital identities for secure operation. As enterprises seek to transform their business models to stay competitive, rapid adoption of IoT technologies is creating increasing demand for Public Key Infrastructures (PKIs) to provide digital certificates for the growing number of devices and the software and firmware they run.\r\nSafe IoT deployments require not only trusting the devices to be authentic and to be who they say they are, but also trusting that the data they collect is real and not altered. If one cannot trust the IoT devices and the data, there is no point in collecting, running analytics, and executing decisions based on the information collected.\r\nSecure adoption of IoT requires:\r\n<ul><li>Enabling mutual authentication between connected devices and applications</li><li>Maintaining the integrity and confidentiality of the data collected by devices</li><li>Ensuring the legitimacy and integrity of the software downloaded to devices</li><li>Preserving the privacy of sensitive data in light of stricter security regulations</li></ul>","iconURL":"https://old.roi4cio.com/fileadmin/user_upload/iot.png"}],"characteristics":[],"concurentProducts":[],"jobRoles":[],"organizationalFeatures":[],"complementaryCategories":[],"solutions":[],"materials":[],"useCases":[],"best_practices":[],"values":[],"implementations":[]}],"jobRoles":[{"id":58,"title":"Chief Executive Officer"},{"id":60,"title":"Chief Information Officer"},{"id":62,"title":"Chief Technical Officer"},{"id":64,"title":"Chief IT Security Officer"}],"organizationalFeatures":["Internet access is available for employees","GDPR Compliance","Personal data operation"],"complementaryCategories":[],"solutions":["No control over data access","Unauthorized access to corporate IT systems and data","Risk or Leaks of confidential information","Risk of lost access to data and IT systems"],"materials":[],"useCases":[],"best_practices":[],"values":["Ensure Security and Business Continuity","Manage Risks"],"implementations":[],"presenterCodeLng":"","productImplementations":[]}},"aliases":{},"links":{},"meta":{},"loading":false,"error":null,"useProductLoading":false,"sellProductLoading":false,"templatesById":{},"comparisonByTemplateId":{}},"filters":{"filterCriterias":{"loading":false,"error":null,"data":{"price":{"min":0,"max":6000},"users":{"loading":false,"error":null,"ids":[],"values":{}},"suppliers":{"loading":false,"error":null,"ids":[],"values":{}},"vendors":{"loading":false,"error":null,"ids":[],"values":{}},"roles":{"id":200,"title":"Roles","values":{"1":{"id":1,"title":"User","translationKey":"user"},"2":{"id":2,"title":"Supplier","translationKey":"supplier"},"3":{"id":3,"title":"Vendor","translationKey":"vendor"}}},"categories":{"flat":[],"tree":[]},"countries":{"loading":false,"error":null,"ids":[],"values":{}}}},"showAIFilter":false},"companies":{"companiesByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"implementations":{"implementationsByAlias":{},"aliases":{},"links":{},"meta":{},"loading":false,"error":null},"agreements":{"agreementById":{},"ids":{},"links":{},"meta":{},"loading":false,"error":null},"comparison":{"loading":false,"error":false,"templatesById":{},"comparisonByTemplateId":{},"products":[],"selectedTemplateId":null},"presentation":{"type":null,"company":{},"products":[],"partners":[],"formData":{},"dataLoading":false,"dataError":false,"loading":false,"error":false},"catalogsGlobal":{"subMenuItemTitle":""}}